
18

Key Factors for Adopting Inner Source

KLAAS-JAN STOL, Lero, University of Limerick
PARIS AVGERIOU, University of Groningen
MUHAMMAD ALI BABAR, University of Adelaide
YAN LUCAS, Neopost Technologies
BRIAN FITZGERALD, Lero, University of Limerick

A number of organizations have adopted Open Source Software (OSS) development practices to support
or augment their software development processes, a phenomenon frequently referred to as Inner Source.
However the adoption of Inner Source is not a straightforward issue. Many organizations are struggling
with the question of whether Inner Source is an appropriate approach to software development for them in
the first place. This article presents a framework derived from the literature on Inner Source, which identifies
nine important factors that need to be considered when implementing Inner Source. The framework can be
used as a probing instrument to assess an organization on these nine factors so as to gain an understanding of
whether or not Inner Source is suitable. We applied the framework in three case studies at Philips Healthcare,
Neopost Technologies, and Rolls-Royce, which are all large organizations that have either adopted Inner
Source or were planning to do so. Based on the results presented in this article, we outline directions for
future research.

Categories and Subject Descriptors: D.2.9 [Software Engineering]: Management—Software process
models; K.6.3 [Management of Computing and Information Systems]: Software Management—Soft-
ware development, Software maintenance, Software process

General Terms: Human Factors, Management, Theory

Additional Key Words and Phrases: Case study, inner source, open-source development practices, framework

ACM Reference Format:
Klaas-Jan Stol, Paris Avgeriou, Muhammad Ali Babar, Yan Lucas, and Brian Fitzgerald. 2014. Key factors
for adopting inner source. ACM Trans. Softw. Eng. Methodol. 23, 2, Article 18 (March 2014), 35 pages.
DOI: http://dx.doi.org/10.1145/2533685

1. INTRODUCTION

Numerous software development methods have been proposed to guide organizations in
their software development: from the traditional waterfall approach and the V-model to
the more recent and highly popular agile methods. While these methods all aim at pro-
viding a systematic way to develop software, the emergence of successful open source
projects has been remarkable, given the seeming absence of a predefined process—
what Erdogmus [2009] provokingly called an antiprocess. Open-source communities
have produced a number of high-quality and highly successful products, including the

This work is partially funded by Science Foundation Ireland grant 10/CE/I1855 to Lero—the Irish Software
Engineering Research Centre (www.lero.ie) and by IT University of Copenhagen. Yan Lucas is currently
affiliated with TyCloud, the Netherlands.
Authors’ addresses: K.-J. Stol (corresponding author) and B. Fitzgerald, Lero—the Irish Software Engineer-
ing Research Centre, University of Limerick; P. Avgeriou, University of Groningen; M. A. Babar, University
of Adelaide; Y. Lucas, TyCloud; corresponding author’s email: klaas-jan.stol@lero.ie.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee.
c© 2014 ACM 1049-331X/2014/03-ART18 $15.00

DOI: http://dx.doi.org/10.1145/2533685

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2533685&domain=pdf&date_stamp=2014-04-04

18:2 K. Stol et al.

so-called LAMP stack (consisting of Linux, Apache, MySQL, and PHP/Perl/Python),
while defying traditional wisdom in software development [McConnell 1999]. Further-
more, while distributed development has proven extremely problematic and challeng-
ing for organizations [Herbsleb and Grinter 1999], open-source software development
represents a successful exemplar of distributed development. Several authors have
argued for drawing lessons from open-source communities and transferring those best
practices to commercial software development [O’Reilly 1999; Asundi 2001; Augustin
et al. 2002; Mockus and Herbsleb 2002; Erenkrantz and Taylor 2003; Fitzgerald 2011;
Rigby et al. 2012]. The open-source phenomenon has attracted significant attention
from the research community seeking to understand how open-source communities
can achieve such success. The success of open source has also captured the attention of
many organizations who strive to replicate similar successes using the same approach.
This phenomenon of organizations leveraging open-source development practices for
their in-house software development is what we label Inner Source, though different
organizations have used various terms to denote this [Stol et al. 2011].1

This trend of organizations’ interest in reproducing the success of open-source com-
munities for in-house software development provides the background of this study.
Inner Source research is still in its nascent phase, and as such, little is known about
the circumstances through which it can be successful. Wesselius [2008] highlighted
that Inner Source is embedded in a company’s existing processes, which are typically
hierarchical and focus on top-down control, and posed the question (using Raymond’s
[2001] Bazaar and Cathedral metaphors): “How can a bazaar flourish inside a cathe-
dral?” Similarly, but more specifically, Gurbani et al. [2006] concluded their study of
Inner Source implementation at Alcatel-Lucent with the following question: “It is not
clear, in general, how and when to initiate [an Inner Source] project that can serve as a
shared resource.” Building on this previous work, our research question is thus: What
are the important factors for adopting Inner Source?

We adopted a two-phased research approach to address this question. In the first
phase, we drew from the extant literature on Inner Source and open source to derive
a framework of factors that support Inner Source adoption. The resulting probing
framework can be used by organizations to assess the extent to which these factors are
in place. In the second phase, we report on the application of the framework in three
industry case studies, which provides a rich description of how these elements “come
to life.”

In recent years, organizations are becoming increasingly familiar with the open-
source phenomenon, as it has become more mainstream, a development that has been
termed OSS 2.0 [Fitzgerald 2006]. At the same time, we have observed an increasing
number of organizations showing an interest in Inner Source, making this study timely.
One of the novel features of this study is that, to our knowledge, it provides the first
high-level overview of the Inner Source phenomenon, in that it draws together relevant
literature from both the open-source and Inner Source fields of study. Furthermore, this
study addresses a real-world problem by offering a framework that can be readily used
by organizations. The empirical element of this study is a significant contribution to
the still limited literature on Inner Source. Previous studies (e.g., Sharma et al. [2002])
did not offer such an empirical component. Practitioner reports (e.g., Barnett [2004])
offer a set of general suggestions, which do not consider an organization’s specific
context. Furthermore, such reports have not followed a scientific approach nor are they
supported by any empirical evidence.

The remainder of this article is structured as follows. Section 2 presents a brief
discussion of related work in this area. This is followed by a presentation of our research

1One of the earliest records using the term ‘Inner Source’ is an article by Tim O’Reilly [2000].

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:3

approach in Section 3. In Section 4, we present a framework that we derived from the
extant literature on Open and Inner Source, which defines a number of factors that
support Inner Source adoption. Section 5 presents the results of the application of the
framework in three case studies. Section 6 presents a discussion of our findings as well
as an evaluation of our framework, and presents an outlook on future work.

2. RELATED WORK AND BACKGROUND

2.1. Defining Inner Source

In earlier work, we defined Inner Source to refer to the adoption of open-source de-
velopment practices within the confines of an organization [Stol et al. 2011]. Whereas
well-defined methods, such as the agile Scrum approach [Schwaber and Beedle 2002]
have clearly defined tasks (e.g., Scrum meetings), artifacts (e.g., Sprint backlog), and
roles (e.g., Scrum Master), this is not so much the case for Inner Source, although
common open-source development practices and roles can be identified. Rather than a
well-defined methodology, we consider Inner Source to be more of a development philos-
ophy, oriented around the open collaboration principles of egalitarianism, meritocracy,
and self-organization [Riehle et al. 2009]. Within Inner Source, a number of common
open-source development practices can be observed:

—universal access to development artifacts (i.e., source code) [Lindman et al. 2008;
Riehle et al. 2009];

—transparent fishbowl development environment [Melian and Mähring 2008,
Lindman et al. 2010];

—peer-review of contributions through organization-wide scrutiny of contributions
[Gurbani et al. 2006; Melian and Mähring 2008; Riehle et al. 2009];

—informal communication channels (e.g., mailing lists, Internet Relay Chat (IRC)
channels) [Stellman et al. 2009; Lindman et al. 2010];

—self-selection of motivated contributors [Gurbani et al. 2006; Riehle et al. 2009];
—frequent releases and early feedback [Gurbani et al. 2006];
—“around the clock” development [Melian and Mähring 2008].

Which of these practices are adopted as part of an Inner Source initiative varies
per organization; each implementation of Inner Source is tailored to the particular
context of the adopting organization [Gaughan et al. 2009]. Existing methods that a
company has had in place for some time may be augmented with open-source practices,
such as those just listed. However, a key tenet of Inner Source is universal access
to the development artifacts throughout an organization so that anyone within the
organization can potentially participate.

As well as common practices, a number of common roles can be identified. Inner
Source projects are often grassroots movements, started by individuals, project teams,
or departments [Riemens and van Zon 2006; Gurbani et al. 2006; Melian 2007]. As
such, the initiator assumes the role of a benevolent dictator [Gurbani et al. 2006],
as commonly found in open-source projects [Mockus et al. 2002]. As some contributors
become experts in parts of the project, they can be promoted to trusted lieutenants
[Gurbani et al. 2006], and together with the benevolent dictator they form a core team.
These governance structures are commonly found in open-source projects. In Inner
Source, additional roles may emerge; Gurbani et al. [2010], for instance, identified a
number of roles in the core team at Alcatel-Lucent, each of which had a specific function
in order to tailor the bazaar to a commercial software development context.

As a project matures, it may attract more attention and support from management.
Once an Inner Source project has been recognized to have significant business value
that is critical to the organization at large, additional funding may be made available

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:4 K. Stol et al.

Table I. Reports on Organizations that have Adopted Inner Source

Organization Terminology Model
Alcatel-Lucent Corporate Open Source [Gurbani et al. 2006, 2010] Project

DTE Energy Not specified [Alter 2006; Smith and Garber-Brown 2007] Infrastructure

Hewlett-
Packard

Progressive Open Source [Dinkelacker et al. 2002; Melian 2007;
Melian and Mähring 2008], Inner Source, Corporate Source
initiative, Controlled Source, Collaborative Development Program
initiative

Infrastructure

IBM Community Source [Betanews 2005; Taft 2005, 2006, 2009;
Vitharana et al. 2010], IBM’s Internal Open Source Bazaar
(IIOSB) [Capek et al. 2005], Internal Open Source [Vitharana
et al. 2010]

Infrastructure

Microsoft Officelabs [Asay 2007]; CodeBox [Ogasawara 2008] Infrastructure

Nokia Inner Source [Pulkkinen et al. 2007], iSource initiative [Lindman
et al. 2008, 2010; Lindman et al. 2013]

Infrastructure

Philips
Healthcare

Inner Source, Inner Source Software [Wesselius 2008; van der
Linden 2009; Lindman et al. 2010]

Project

SAP SAP Forge initiative [Riehle et al. 2009] Infrastructure

US DoD Forge.mil [Federal Computer Week 2009; Martin and Lippold
2011]

Infrastructure

for the core team to provide ongoing support and training to the customers of the
project.

There have been a number of reports on the adoption of Inner Source (see Table I).
Different organizations and authors have used different terminology to refer to the
adoption of OSS development principles. Besides the term “Inner Source” used in this
paper, other terms for this phenomenon are “Progressive Open Source” and “Controlled
Source” [Dinkelacker et al. 2002], “Corporate Source” [Goldman and Gabriel 2005],
“Corporate Open Source” [Gurbani et al. 2006], and “Internal Open Source” [Goldman
and Gabriel 2005; Vitharana et al. 2010].

Organizations also adopt Inner Source in different ways, since it needs to be tai-
lored to an organization’s context [Melian and Mähring 2008; Gaughan et al. 2009].
Lindman et al. [2013] described this process of tailoring the open-source paradigm to
an organizational context as “re-negotiating the term ‘OSS.’ ” Nevertheless, Gurbani
et al. [2010] observed two main models of Inner Source adoption: infrastructure-based
and project-specific Inner Source. These two models are described further; a detailed
discussion of the differences is presented in Stol et al. [2011].

The infrastructure-based model is characterized by the availability of suitable infra-
structure that allows individuals and teams within an organization to start an Inner
Source project (e.g, a software ‘forge’ [Riehle et al. 2009]). This model maximizes sharing
of software packages within an organization, but reuse is rather ad-hoc and support is
heavily dependent on the maintainer of a software package. Most organizations listed
in Table I have adopted this model. The infrastructure used for this may vary, but
a number of organizations have adopted clones of the SourceForge.net platform (e.g.,
SAP [Riehle et al. 2009]).

The second Inner Source model is what Gurbani et al. [2010] termed the project-
specific model. In this model there is typically an organizational unit (a core team) that
takes responsibility for a certain Inner Source project (a shared asset). This respon-
sibility includes the further development of the shared asset and providing support
to users of the software throughout the organization. We are aware of two cases that

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:5

have adopted this model: Alcatel-Lucent [Gurbani et al. 2010] and Philips Healthcare
[Wesselius 2008].

Thus, the two Inner Source models differ mainly in the level of support and dedica-
tion a certain Inner Source project receives, which in practice means the availability
of resources. Since organizations must spend their resources carefully, budgets for a
dedicated maintenance and support team (a key characteristic of the project-specific
model) will only be made available for promising software projects that represent
business-critical assets to the organization.

A key difference between Open Source and Inner Source is that the resulting software
in Inner Source is proprietary, and as such, has no Open-Source license [Goldman and
Gabriel 2005]. Of course, organizations may alter their software marketing strategy
over time and make the software that was produced as an Inner Source project available
as an open-source project, a phenomenon that has been termed Opensourcing [Ågerfalk
and Fitzgerald 2008]. In such a scenario, an organization may still contribute to, or even
lead the software project, in which case we speak of sponsored open source [Capiluppi
et al. 2012].

2.2. Adopting Open-Source Development Practices

Little research has been done on how organizations can create an internal bazaar, let
alone whether Inner Source is a viable option for an organization at all. We are aware
of a few studies that are related to ours, which we discuss next.

Sharma et al. [2002] presented an extensive and in-depth comparative analysis of
traditional organizations and open-source communities. Their analysis was based on
three dimensions: structure, process and culture, each of which was further subdivided
in a number of themes. Based on this analysis, Sharma et al. proposed a framework
for creating, what they called, “hybrid open-source communities.”

One of the dimensions used in the analysis by Sharma et al., culture, was also the
focus of an analysis by Neus and Scherf [2005]. They emphasized that merely adopting
the visible, “formal artifacts,” such as organizational roles, processes, and tools, is not
sufficient, and that an organization must also pay attention to its cultural identity,
which is not as clearly visible as its formal artifacts.

Interestingly, Robbins [2005] suggested that the very adoption of open-source de-
velopment tools (a clearly visible artifact, as previously mentioned) will influence an
organization’s software development processes. Robbins reviewed a number of common
open-source development tools and presented an analysis of how using these tools af-
fect software development processes. One example of an organization that has adopted
certain OSS development practices through the adoption of OSS tools is Kitware
[Martin and Hoffman 2007]. Developers at Kitware also use agile software develop-
ment practices, which suggests that existing processes can be complemented or aug-
mented (rather than be replaced) with OSS development practices. Torkar et al. [2011]
identified a number of open-source “best practices” suitable for tailoring to fit indus-
trial software development. Based on a review by practitioners, the top three practices
considered most suitable were (1) defining an entry path for newcomers, (2) increasing
information availability and visibility (what Robbins [2005] referred to as ‘universal
access to project artifacts’), and (3) letting developers influence ways of working. Rigby
et al. [2012], too, identified a number of lessons from open-source development that
they consider to be suitable for adoption in proprietary projects.

To conclude, there have been a few investigations into the adoption of open-source
practices and tools in conventional organizations. However, each of these investigations
is limited in one or more ways. For instance, while the comparative analysis by Sharma
et al. [2002] is extensive and insightful, their framework for creating “hybrid-open

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:6 K. Stol et al.

source” communities is not grounded in the literature, nor has their framework been
empirically evaluated, thereby missing a link to a real-world implementation of Inner
Source. Furthermore, Torkar et al. [2011] provide a number of starting points for orga-
nizations to adopt individual open-source development practices, but no consideration
is made of an organization’s particular context. Key factors that are important for
adopting Inner Source have not been previously identified.

3. RESEARCH APPROACH

We conducted a two-phased study to address our research goal. In the first phase, we
derived a framework to identify the key factors that support an Inner Source initiative.
This is further outlined in Section 3.1. In the second phase, we applied the framework in
three industry case studies. We deemed a multiple case study methodology appropriate,
since it provides real-world cases that illustrate how the various themes identified in
the framework “come to life.” Details of the case study design and background of the
three case companies are presented in Section 3.2.

3.1. Phase I: Derivation of the Framework

A framework is useful to “synthesize previous research in an actionable way for prac-
titioners” [Schwarz et al. 2007], which is why we deemed derivation of a framework
a suitable approach to address our research question. As mentioned, there has been
limited attention to this topic in the research literature; however, it is interesting—and
reassuring—that the various reports are quite consistent with each other.

We first identified all relevant reports (case studies, experience reports) on the adop-
tion of open-source development practices within an organization. Given the nascent
state of the Inner Source area as a field of research, we deemed a systematic literature
review unsuitable. This was confirmed by a pilot systematic review, through which we
identified a very limited number of papers. Another inhibitor to doing a systematic
review is a lack of consistent and agreed terminology in the field, as previously men-
tioned (see also Table I), which makes searching in digital libraries very challenging.
Instead, the literature was identified over an extended period of time, through Web
searches and following forward and backward references. The identified articles on
Inner Source are listed in Appendix A. Some of these are short papers (e.g., Martin and
Lippold [2011]), and not all of them provide insights into factors that support Inner
Source.

For the framework derivation, we adopted thematic synthesis, following the steps
recommended by Cruzes and Dybå [2011], discussed next.

(1) Extract data. We first carefully read all relevant papers so as to get immersed in
the various studies. Specific segments of text that were of interest to the objective
of our review were stored in a spreadsheet, along with the source of each extracted
segment. This established an audit trail that allowed us to trace back the various
extracted text segments to their original contexts.

(2) Code data. After data extraction, we labeled each extracted text segment with
keywords. Where multiple keywords were applicable, we listed all.

(3) Translate codes into themes. Once all extracted text segments were coded, the
various entries in the spreadsheet were sorted by code so as to group all related
text segments. An analysis of similar entries resulted in a set of themes. Through an
iterative process, we identified nine themes, or elements, that together constitute
our framework.

(4) Create a model of higher-order themes. We further explored the relationships
among the nine elements identified in Step 3, through which we identified three

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:7

higher-order themes. These are Software Product, Practices & Tools, and Organi-
zation & Community.

(5) Assess the trustworthiness of the synthesis. Finally, in order to increase our con-
fidence that the synthesis resulted in a correct representation of the reviewed
literature, we applied peer debriefing as a technique among the authors of this
paper. This resulted in intense and fruitful discussion as to whether the elements
of the framework correctly capture the essence of the reviewed literature.

The synthesized framework is presented in Section 4.

3.2. Phase II: Application of the Framework

In order to illustrate and demonstrate the framework in action, we followed the first
phase with an empirical phase, during which we conducted three industry case stud-
ies. In particular, one case study was conducted at Philips Healthcare, which had an
established track record in Inner Source adoption [van der Linden 2009]. Findings
from this case study illustrate how the factors identified manifest themselves in a
real-world setting. The other two case studies were conducted at two organizations,
Neopost Technologies and Rolls-Royce, both of which had indicated a strong interest
in adopting Inner Source and had already started a number of informal initiatives.
Findings from these two cases demonstrate how the framework highlights important
issues that must be considered for these organizations. All case studies were conducted
on-site at the organizations’ premises.

3.2.1. Background of the Case Study Organizations.

—Philips Healthcare is a large, globally distributed organization which develops and
produces product lines of medical devices, such as X-ray and Magnetic Resonance
Imaging (MRI) scanners. At the time of our study, the division had a workforce
of almost 38,000. Philips Healthcare is organized in a number of product groups,
called “business units,” each specialized and responsible for the development of their
respective products. For brevity, we shall refer to Philips Healthcare as “Philips” in
the remainder of this article.

—Neopost is a world leader in the mail sector and is a globally distributed organization
with a workforce of 5,500, including 300 R&D engineers. The visited location in the
Netherlands is a research and development branch of the global Neopost organiza-
tion, that designs and manufactures inserter machines.

—Rolls-Royce is a large organization, employing 11,000 across a wide range of domains,
with a large presence in the aerospace domain within which our study was focused.
The development teams we studied all worked on development and design tools,
rather than the actual embedded software that controls hardware (e.g., aircraft en-
gines). Such design tools are used by design engineers elsewhere in the Rolls-Royce
organization.

3.2.2. Data Collection and Analysis. Informed by the established literature that provides
guidance and recommendations for performing case studies [Yin 2003; Verner et al.
2009; Runeson et al. 2012], we developed a case study protocol which outlined the
objectives, research questions, data collection and data analysis procedures.

We drew on a number of data sources for the three case studies (see Table II) so
as to achieve triangulation across different data sources. The data for the three cases
were gathered over a period of two years. We conducted semi-structured interviews
with a total of 32 participants. All but two interviews were conducted face-to-face; the
remaining two were conducted over the phone. Most interviews lasted approximately
one hour, and all were recorded with the participants’ consent, and subsequently tran-
scribed resulting in approximately 400 pages.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:8 K. Stol et al.

Table II. Data Sources for the Empirical Evaluation of the Framework

Philips Neopost Rolls-Royce

Existing reports on Philips’ Inner
Source initiative.

Internal wiki and project
documentation.

Workshop.

Interviews with: Interviews with: Interviews with:
- 2 Software architects - 10 Software developers - 1 Chief architect
- 2 Directors - 1 System architect - 4 Team leads
- 4 Managers - 1 Dept. manager - 1 Software developer
- 2 Team leads - 2 Team leads
- 1 Software designer - 1 User interface designer

2 informal discussions with Inner
Source initiator

Meetings (incl. Scrum, future
project testing strategy)

We analyzed the data using qualitative techniques as described by Seaman [1999].
All interview transcripts were thoroughly read, and phrases of interest were coded
with the framework elements as seed categories. Throughout the process, short memos
were written and exchanged among the authors which were then further discussed as
necessary.

In addition to the interviews, we drew from a number of other data sources at the
three companies. For the case at Philips, we studied existing reports on its Inner Source
initiative, and also had two informal discussions (one hour each) with the initiator of
Philips’ Inner Source initiative. These discussions gave additional insight into the
history of the company’s Inner Source program. At Neopost, we studied information
available on the internal wiki as well as project documentation. This helped us to
understand the current state of knowledge sharing through these media and also
supported us in forming an understanding of terminology and domain knowledge which
helped in the interviews. Prior to the case study at Rolls-Royce, we held an online
workshop during which we presented and discussed the framework. The workshop
also included a Q&A session and was attended by approximately 20 people, a few of
whom were based in the U.S.

The results of the three case studies are presented in Section 5.

4. A FRAMEWORK OF FACTORS SUPPORTING INNER SOURCE

The framework we derived (see Figure 1) consists of nine elements organized into
three themes: Software Product (Section 4.1)2, Practices & Tools (Section 4.2), and
Organization & Community (Section 4.3). For each factor, we present a brief synopsis
followed by a review of the relevant literature pertaining to that factor.

4.1. Software Product

4.1.1. Seed Product to Attract a Community. To ‘bootstrap’ an Inner Source initiative,
there must be a “seed” product—a shared asset—that is of significant value to the
organization, or at least of high perceived value. The seed product must have an initial
and runnable version, which can attract a community by first attracting users, who
may subsequently become contributors [Wesselius 2008]. This community of users and
contributors is a key factor to an Inner Source project’s success.

The need for an initial basic architecture and implementation was clearly noted by
Raymond’s [2001, p. 47] earlier observation.

2Where we write “product,” this can be interpreted as module, component, or other unit of software.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:9

Fig. 1. Factors that support Inner Source adoption.

“It’s fairly clear that one cannot code from the ground up in bazaar-style.
One can test, debug and improve in bazaar-style, but it would be very hard
to originate a project in bazaar mode. Linus didn’t try it. I didn’t either.
Your nascent developer community needs to have something runnable and
testable to play with.” (Emphasis by Raymond)

Feller and Fitzgerald [2002] summarized this observation as follows: “planning, anal-
ysis and design are largely conducted by the initial project founder, and are not part of
the general OSS development life cycle.” A real-world example of this is Topaz, which
was an attempt to re-implement the Perl programming language. Its initiator described
this as follows:3 “when you’re starting on something like this, there’s really not a lot of
room to fit more than one or two people. The core design decisions can’t be done in a
bazaar fashion.”

Senyard and Michlmayr [2004] labeled this initial stage the Cathedral phase, after
which a project may transition into the Bazaar phase. The Cathedral phase is char-
acterized by an initial idea and implementation by an individual or small team; for
instance, the Inner Source initiative at Alcatel-Lucent (an implementation of the Ses-
sion Initiation Protocol (SIP)) started with a single developer [Gurbani et al. 2006].
Once in its Bazaar phase as an Inner Source project, it attracted a significant commu-
nity of users and developers within the organization which was pivotal for its further
development. It has been suggested that the requirements and features of the seed
product need not be fully known at the outset so that the project can benefit from
organization-wide input and continuously evolve [Gurbani et al. 2006]. If a project is
fully specified and implemented (and thus only needs maintenance), there is little need
for new contributions from a wider community. As Wesselius [2008] aptly pointed out,
“a bazaar with only one supplier isn’t really a bazaar. Dinkelacker et al. [2002] found
that it is a challenge to find an appropriate initial software domain. Gurbani et al.
[2006] hypothesized that lacking an initial seed product, “a research or advanced tech-
nology group is a good location to start a shared asset,” while Wesselius [2008] argued
that the seed product should have a well-defined specification so that its development
can be outsourced to a central development group (i.e., a core team). It is important
that the shared asset has significant differentiating value to the organization; if it is

3http://www.perl.com/pub/1999/09/topaz.html.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:10 K. Stol et al.

merely a commodity (e.g., a database system or operating system), there may not be
sufficient justification for in-house development [van der Linden et al. 2009].

4.1.2. Multiple Stakeholders for Variety in Contributions. An Inner Source project must be
needed by several stakeholders (i.e., individuals, teams, or projects that productize
the shared asset) so that members from across an organization can contribute their
expertise, code and resources. This in turn will help to establish a sufficiently large
pool of users and contributors to establish a vibrant Inner Source project.

Gurbani et al. [2006] argued that different product groups have different needs,
and that groups can benefit from other groups’ contributions. For instance, the SIP
implementation at Alcatel-Lucent benefited greatly from feedback and suggestions
of colleagues who were experts in specific fields, such as network optimization and
parsing techniques. In other words, input from across an organization can significantly
broaden the expertise that is available to a project [Riehle et al. 2009]. Organization-
wide feedback can help to solicit a variety of ideas, a sentiment that we would express
(inspired by Linus’s Law) as: “Given enough mindsets, all ideas are obvious.”

The presence of multiple stakeholders suggests that there is considerable interest
in the development of a software product; hence, this indicates a good motivation to
pool resources and to develop it as an Inner Source project [Gurbani et al. 2006]. Fur-
thermore, having different product groups integrate the shared asset helps to manage
its scope and reusability in different contexts [Robbins 2005]. Robbins [2005] outlined
the tension with conventional software development, in which teams try to optimize
returns on their current project on the one hand, and the cost of providing ongoing sup-
port for reusable components on the other hand. From a business perspective, Gurbani
et al. [2006] argued the following:

“It is essential to recognize and accommodate the tension between cultivating
a general, common resource on the one hand, and the pressure to get specific
releases of specific products out on time.”

4.1.3. Modularity to Attract Contributors and Users. An Inner Source project should have a
modular architecture. This will facilitate parallel development as different developers
(i.e., contributors) can work in parallel on different parts of the project without any
merge conflicts. Furthermore, a modular architecture will also help reuse as integration
can become easier, thus increasing the number of potential users.

A modular software structure has many advantages and is generally preferred
[Parnas 1972] but is particularly important in open-source style development, as it
facilitates parallel development, that is, allowing many developers work on different
parts of the same product simultaneously [Torvalds 1999; Bonaccorsi and Rossi 2003].
Successful open-source projects tend to exhibit a high level of modularity [O’Reilly 1999;
Feller and Fitzgerald 2002]. A modular architecture greatly helps in merging various
changes into a single development branch [Gurbani et al. 2006] or even to let developers
work on the same repository at the same time (with no merges needed). MacCormack
et al. [2006] refer to this as “architecture for participation,” the idea that modularity
facilitates developers to better understand the code, and which thus enables developers
to contribute in a meaningful way. Baldwin and Clark [2006] showed that codebases ex-
hibiting a higher modularity help to increase developers’ incentives to join and remain
involved in an open-source project, thus helping to keep contributors involved.

Another benefit of modularity is that it supports reuse of a component, which means
that it helps to attract (and keep) users in the community. Reuse is a key motivation
to start an Inner Source project in the first place [Dinkelacker et al. 2002; Vitharana
et al. 2010]. An Inner Source project will only attract users if it offers a significant
set of functionality (cf. Section 4.1.1). However, when the shared asset becomes too

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:11

“heavyweight,” it may be perceived as too difficult or inconvenient to use. Dinkelacker
et al. [2002] expressed this sentiment as follows: “Using the word ‘module’ somewhat
generically, it’s a challenge to strike the balance between module simplicity and utility.”
This trade-off refers to a component’s completeness (utility) thereby broadening a prod-
uct’s appeal [Robbins 2005], and preventing feature creep, making reuse of the compo-
nent undesirable due to its complexity or size. One of the principles of collaboration in
open source is egalitarianism [Riehle et al. 2009], the idea that anyone is welcome to
contribute a new feature to “scratch an itch” [Raymond 2001; Robbins 2005]. However,
this may also “lead to feature creep and a loss of conceptual integrity” [Robbins 2005].
Losing ‘conceptual integrity’ may result in a component which is no longer easy to use
or whose architecture imposes too many restrictions on the client-application.

4.2. Practices and Tools

4.2.1. Practices to Support Bazaar-Style Development. Software development in an inter-
nal bazaar is inherently different from conventional approaches, including contempo-
rary ones such as agile methods. Two aspects related to implementation activities are
particularly different in open-source development: requirements elicitation and main-
tenance. For an Inner Source project to succeed, developers should be comfortable with
bazaar-style practices, as conventional approaches may not be appropriate.

In terms of requirements elicitation, the process of identifying a feature and provid-
ing an implementation is very different from traditional “requirements engineering”
scenarios, and thus this is something that Inner Source developers should be com-
fortable with. Whereas conventional development approaches may have procedures in
place that prescribe how requirements are gathered, stored, and managed, the require-
ments process in open-source projects may have a much faster turnaround time from
initial idea to implementation. Deliberation about features, details, and idealized sys-
tems is typically not much appreciated. This is not to say that open-source developers
do not discuss requirements at all, but that a sound balance must be found. On the one
hand, conversations (e.g., on mailing lists or IRC) may lead to discussions (disputes,
even) on the most minute and trivial details, a phenomenon known as “bikeshedding”
[Fogel 2005, p.98]. On the other hand, some community members may have the most
fantastic plans and idea, but it is actual running code that is valued most. Linus
Torvalds, ‘benevolent dictator’ of the Linux kernel project, expressed this sentiment
famously as “Talk is cheap. Show me the code.” [Torvalds 2000]. Thus, a common sce-
nario is that developers identify features, provide a “patch” that implements the new
functionality after which it is offered to the community for peer review. The fact that
the feature was needed in the first place is “asserted after the fact” [Scacchi 2004].

As an open-source project evolves, it is subject to maintenance. Open-source projects
slowly evolve, with many minor improvements and mutations, over many releases with
short intervals. Or, as Merilinna and Matinlassi [2006] phrased it, “OSS is a moving
target—or a dead corpse.” A project founder may not have anticipated the project’s
evolution where the many additions of various features uncover the limitations of the
initial design made in the project’s Cathedral phase. As a result, contributors feel the
need to re-implement a subsystem, or what Scacchi [2004] has termed “reinvention.”
Raymond cited Brooks [1995, p. 116], who captured this idea well: “Plan to throw one
away; you will, anyhow.” The Perl programming language is a good example of this.
Perl versions one to four were incremental. Perl’s creator, Larry Wall, reimplemented
Perl 5 from scratch. However, at some point that code base was characterized4 as “an
interconnected mass of livers and pancreas and lungs and little sharp pointy things and
the occasional exploding kidney.” Around the year 2000, it was decided to re-implement

4http://www.perl.com/pub/1999/09/topaz.html.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:12 K. Stol et al.

the language once again, resulting in a thorough reinvention.5 Reinvention in Inner
Source may be more restricted than open-source communities due to the pressure of
productization and limited resources. In practice, therefore, reinvention is limited only
to those parts of a product that are critical bottlenecks. For instance, the parser in the
initial SIP implementation at Alcatel-Lucent was optimized for scalability by having
an expert on parsing techniques from within the organization ‘reinvent’ it.

4.2.2. Practices to Support Bazaar-Style Quality Assurance. One of the key tenets of suc-
cessful open-source projects is a set of mature quality assurance (QA) practices. For an
Inner Source project to flourish and achieve a high level of quality, it is important that
a set of QA practices are adopted that are suitable for an Inner Source project.

Open-source quality assurance practices can differ significantly from those used in
conventional software development. Peer review, which was briefly mentioned, is one
of the best known practices in open-source development [McConnell 1999; Rigby et al.
2012]. Feller and Fitzgerald [2002, p. 84] characterized peer review in open-source
settings as truly independent; that is, peer-review in open-source projects is a self-
selected task by other interested developers [Asundi and Jayvant 2007; Rigby et al.
2008]. Open-source developers are more likely to provide genuine feedback given their
interest in the success of the project they work on, rather than doing a review because
they were told to and possibly having to consider relationships with co-workers when
pointing out any issues with their contributions.

Peer review becomes particularly effective when there is a large number of developers
in a project, as it can benefit from what is known as Linus’s Law [Raymond 2001]:
“Given a large enough beta-tester and co-developer base, almost every problem will be
characterized quickly and the fix obvious to someone,” more often stated succinctly as
“Given enough eyeballs, all bugs are shallow.”

Peer review can take place either before or after committing changes to the source
code, depending on whether the contributor making the changes has a ‘commit bit,’
that is, write access. It is an important and effective practice to ensure that any code
that is checked in is of good quality, does not contain hacks, and will not lead to an
undesirable path of evolution (i.e., prevent future improvements). Direct commit access
is usually only given to long-time developers who are trusted to protect the project from
bad check-ins; such developers are also known as “trusted lieutenants” [Raymond 2001;
Gurbani et al. 2006].

A cardinal sin is to “break the build,” that is, checking in code that would prevent the
project compiling successfully, as it puts all developers’ progress on hold. In order to
prevent this from happening, contributors are expected to test their changes first before
submitting a patch. Regression test suites and use of specialized testing tools (e.g.,
Tinderbox) are commonly used in successful open-source projects to provide monitoring
of the quality.

Another practice to support quality assurance is to make regular and frequent re-
leases [Robbins 2005; Michlmayr and Fitzgerald 2012]. Releases can be of different
types, such as development releases or production releases that are more thoroughly
prepared (or ‘hardened’) for productization. Release management in conventional soft-
ware development can vary substantially, depending on the development approach
that is taken (e.g., waterfall [Royce 1987] versus agile approaches such as Scrum).
Likewise, while release management in open-source projects can vary significantly
as well [Erenkrantz 2003], successful open-source projects tend to follow Raymond’s
advice: “Release early. Release often. And listen to your customers” [Raymond 2001,
p. 29]. In recent years, a number of successful open-source projects have adopted a

5http://www.perl6.org/archive/.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:13

time-based release strategy, as opposed to a feature-based release strategy [Michlmayr
and Fitzgerald 2012]. Time-based releases offer various benefits, such as less “rush-
ing in” code for new features as releases are frequent, and less fire-fighting as the
release process is exercised more often. A regular release cycle also means that there
are more opportunities for “bug squashing” sessions (usually held prior to a release),
and more regular feedback of users, both of which can contribute to a project’s quality.
This practice is also very suitable for Inner Source projects; for instance, the SIP stack
at Alcatel-Lucent used to be on a two-weekly (development) release schedule.

4.2.3. Standardization of Tools for Facilitating Collaboration. A key success factor for an Inner
Source project is that there is a set of common and compliant development tools so as
to make contributing easy [Dinkelacker et al. 2002; Gurbani et al. 2006; Riehle et al.
2009]. Differences in the tools that are used across an organization (not uncommon in
large organizations) can be an obstacle for developers to contribute, or may necessitate
duplication of the code repository, causing additional synchronization efforts. For that
reason, a set of common tools must be available throughout the organization.

Tools commonly used by OSS projects are (besides compilers) version control systems
(e.g., Subversion), issue tracking software (e.g., Trac), mailing lists, and wikis [Robbins
2005]. While a number of these tools are also commonly used in commercial software
development, different business units within large organizations often use a wide
range of different tools [Robbins 2005; Gurbani et al. 2006; Riehle et al. 2009]. Riehle
et al. [2009] reported that “The biggest hurdle to widespread adoption of SAP Forge is
its limited compliance with tools mandatory for SAP’s general software development
process.” Several authors reported that moving code among different version control
systems is challenging [Dinkelacker et al. 2002; Gurbani et al. 2006]. For instance,
Gurbani et al. [2006] reported their experiences of certain teams replicating the original
shared asset’s source code into their preferred repository, causing significant merging
problems later on.

Therefore, an organization considering adopting Inner Source should pay sufficient
attention to addressing this issue. Often, barriers to achieve this are not of a technical
nature, but rather organizational or sometimes political. Organizational policies en-
forced by IT departments of large, global organizations may have significant impact on
what can be achieved, even if supported by local management.

4.3. Organization and Community

4.3.1. Coordination and Leadership to Support Meritocracy. An Inner Source project requires
a bazaar-style approach to coordination and leadership so as to allow a core team,
trusted lieutenants, and other motivated contributors to emerge. Providing flexibility
to members across an organization is key to enabling a community to flourish.

Leadership and coordination are two aspects that differentiate open-source projects
from traditional projects. Several authors have highlighted the importance of leader-
ship, including a core team that takes responsibility for development and maintenance
of a shared asset [Dinkelacker et al. 2002; Gurbani et al. 2006, 2010; Wesselius 2008].
Leadership in traditional organizations is based on seniority and status (e.g., junior vs.
senior developer) [Riehle et al. 2009]. This is very different from open-source commu-
nities, where projects are typically started by one developer who acts as a “benevolent
dictator.” 6

As a project matures, new key developers can emerge based on the concept of mer-
itocracy [Gacek and Arief 2004; Neus and Scherf 2005; Riehle et al. 2009]. Status is
earned based on the merit of a developer’s contributions, which usually also results in a

6E.g., Larry Wall in Perl, Linus Torvalds in the Linux kernel, and Guido van Rossum in Python.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:14 K. Stol et al.

bigger say in important decisions regarding the project. Gurbani et al. [2006] reported
the following:

“Some developers will naturally gravitate towards understanding sizeable
portions of the code and contributing in a similar manner, often on their own
time. Such developers should be recognized by making them the owner of
particular subsystems or complex areas of the code (the “trusted lieutenant”
phenomenon).”

Whereas in traditional organizations coordination is based on project plans and
release schedules, open-source projects are rather self-organizing [Crowston et al.
2007]. Open-source developers, not concerned with schedules or deadlines, typically
select tasks that they are interested in [Feller and Fitzgerald 2002; Robbins 2005;
Riehle et al. 2009]. The motivation to do so is often explained as “scratching an itch”
[Raymond 2001]. Torkar et al. [2011] identified task selection as an opportunity for
commercial software development organizations to adopt a bazaar-style of working;
letting go of formal structures and ownership was also suggested by Dinkelacker et al.
[2002]. However, Inner Source projects cannot be fully self-organizing, as there are
business aspects to consider such as the timely delivery of products that depend on the
shared asset. Thus, self-organization is one area where the open-source approach needs
to be tailored, or renegotiated to fit a corporate context. In the case of Alcatel-Lucent,
for example, Gurbani et al. [2010] identified a number of project management roles
within their core team. A key role is that of the feature manager, that is, someone who
performs a certain level of coordination. For instance, the feature manager identifies
features that need to be implemented and will identify potential developers in the wider
organization who would be suitable work on a particular feature. This process depends
partly on knowledge of who-knows-what and involves finding a balance between devel-
opers’ availability and engaging in a dialogue with those developers’ managers so as to
be able to “borrow” them.

The core team and trusted lieutenants previously mentioned must agree on a common
vision for future evolution of the project [Gurbani et al. 2006] and guard the common
architecture so that additions from one contributing group do not lead to integration
problems in another group.

4.3.2. Transparency to Open Up the Organization. Transparency lies at the heart of, and is
a prerequisite for, open collaboration projects, even when this ‘openness’ is limited to
an organization’s boundaries, as is the case for Inner Source. Transparency is essential
to establish visibility and to attract interested developers who may start out as ‘lurk-
ers’ and transform into active contributors. We discuss three aspects of transparency:
organizational culture, artifacts and communication.

Neus and Scherf [2005] suggested learning about the organization’s culture and
whether there is a strictly obeyed hierarchy. They suggest to do the “Emperor’s clothes”
test in order to see how open the organization is, describing this as follows:

“We find out if there are ways in the organization that allow a novice (e.g.,
an intern) to publicly call attention to the emperor’s (i.e., the expert’s) lack
of clothes (i.e., to raise quality issues), or if all internal communication ad-
dressed to a larger audience has to go through some gatekeepers.”

An open development culture was also advocated by Riehle et al. [2009], who argued
in favor of egalitarianism, and that “projects must exhibit a mind-set that welcomes
whoever comes along to help, rather than viewing volunteers as a foreign element.”
Raymond [2001], too, argued that it is critical that a coordinator is able to recognize good
design ideas from others. Dinkelacker et al. [2002] reported that “getting developers

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:15

and their management chain comfortable with sharing code and development respon-
sibility across the company” may be challenging.

Open collaboration projects provide universal, immediate access to all project arti-
facts, allowing anyone to participate [Robbins 2005; Riehle et al. 2009]. While a set
of common tools (cf. Section 4.2.3) facilitates the more technical aspects that ensure a
common development environment, infrastructure is essential for a transparent pro-
cess that is based on sharing information and keeping information widely available and
up-to-date. The extent to which project artifacts (i.e., source code, issues, documenta-
tion, etc.) are accessible to others in commercial software development settings may
vary widely from organization to organization. It is not uncommon that such artifacts
are private to the developing team.

It is important also that access is straightforward and that there are no barriers
to finding information on an Inner Source project, so that potential new community
members do not find getting involved to be too cumbersome. At Alcatel-Lucent, for
instance, a Centre of Excellence (COE) was established, that provided infrastructure
for accessing the source code as well as other information on the Inner Source project
[Gurbani et al. 2006]. This way, the COE established a “one-stop shop” for users of the
shared asset. It is important to provide sufficient support and maintenance for this
and other infrastructure that is needed for Inner Source [Dinkelacker et al. 2002].

Other infrastructure includes means of communication, such as a mailing list for
online (and archived) discussions, IRC for synchronous and real-time communication,
and Q&A forums. More mature open-source projects can also organize regular meet-
ings in an IRC channel. For instance, the Parrot project has weekly progress meetings
to which all developers with a “commit bit” are invited.7 This is very different from con-
ventional communication mechanisms, such as scheduled meetings, where face-to-face
communication is much more common than in open-source projects (where face-to-face
communication is minimal if not non-existent). Agile methods in particular value face-
to-face meetings over written reports and memos [Fowler and Highsmith 2001]. Though
organizations involved in distributed development lack face-to-face communication as
well, modern technological infrastructure (e.g., video conferencing) facilitates virtual
face-to-face meetings, which are highly uncommon in open-source projects. In any case,
meetings in commercial organizations are less “bazaar-like” in that participants are
not supposed to join or leave as they please.

4.3.3. Management Support and Motivation to Involve People. A key condition for establish-
ing a successful Inner Source project is to acquire top-level management support on
the one hand and to involve interested people (i.e., users and contributors) in an or-
ganization on the other hand. Support from top-level management is required so that
additional resources can be granted if requested, and also for advertising and advocat-
ing an Inner Source project throughout the organization.

Several authors have argued for the importance of management support
[Dinkelacker et al. 2002; Gurbani et al. 2006, 2010; Riehle et al. 2009]. Dinkelacker
et al. [2002] described how this was a crucial factor for one of HP’s Inner Source initia-
tives, which is named CDP.

“It has been critical to CDP success to have a group of executive champi-
ons. In CDP’s case we have two champions, the chief technology officer and
the chief information officer. These champions provide the urgency to the
organization to start the change process.”

7One of the authors (kjs) was a contributor to the Parrot project (with a commit bit).

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:16 K. Stol et al.

Riehle et al. [2009] wrote that managers of research projects are generally supportive
of the volunteer contributions, but that managers of volunteers from regular product
groups are typically skeptical in the beginning. However, Riehle et al. also found that
management became “neutral” or even supportive once they realized the benefits of
early engagement with research projects. An important issue here is that this manage-
ment support is also expressed in terms of budgets, that is, that budgets and resources
are made available to support this. Wesselius [2008] discussed a number of criteria for
an internal business model that can support this.

While management support is essential, merely enforcing an Inner Source initia-
tive from the senior management level is not sufficient and in fact goes against the
open-source development philosophy that is characterized by voluntary participation
[Wesselius 2008]. Neus and Scherf [2005] emphasized the importance of passionate
people: “to drive change, you need passion,” and “people who understand and are ex-
cited about the change.” In a similar vein, Raymond [2001] wrote the following:

“In order to build a development community, you need to attract people,
interest them in what you’re doing, and keep them happy about the amount
of work they’re doing.”

Neus and Scherf [2005] argued that the cultural shift needed for adopting a bazaar-
style development approach cannot be forced but merely facilitated. In order to achieve
motivation and “buy-in” of staff, it is essential to demonstrate value first, and suggest
to do so by solving a concrete problem with a small scope. In order to get started, a few
authors have suggested to provide what has been termed a “gentle slope” [Halloran
and Scherlis 2002] to provide some handholding [Gurbani et al. 2010] or to define an
“entry path” for newcomers [Torkar et al. 2011], which may eventually lead to an active
community of contributors.

5. CASE STUDIES

Following the derivation of the framework (see Figure 1) we now present the results
of applying the framework in three large organizations. For each factor, we discuss
how this has manifested at an existing Inner Source implementation (case I, Philips),
after which we present the findings from cases II (Neopost) and III (Rolls-Royce), both
of which have initiated informal bazaar-style initiatives. Respondent identifiers are
prefixed with the first letter of their organization’s name (i.e., P, N and R).

5.1. Software Product

5.1.1. Seed Product to Attract a Community. The seed product at Philips was initially a set
of components, or component suite, with common functionality related to the DICOM
(Digital Imaging and Communications in Medicine) standard. This is a standard for
exchanging medical images and workflow information, and as such, is used by most
product groups within Philips. For that reason, this set of components was a good
starting point, or seed, for Philips’ Inner Source initiative. Over time, this component
suite evolved into a platform for a software product line, which is still evolving and
extended today.

In both Neopost and Rolls-Royce, we identified several potential seed products. At
Neopost, a promising component is a Hardware Abstraction Layer (HAL). The HAL is a
component that controls the actual hardware of inserter machines. Common operations
are abstracted away, which decouples a machine’s user-interface application from its
hardware. The HAL is written in C++ and has a well-defined interface consisting of a
set of virtual functions (supporting polymorphism). This allows for easy and modular
extensions by others, and it is likely the HAL will need many extensions in the future,

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:17

as software support for new hardware components must be added. Given that the HAL
will be used in most future machines developed at Neopost, it is of significant value to
the organization.

At Rolls-Royce, we identified a number of candidate seed products, some of which
are still in a prototyping phase. Participants generally agreed across groups that a
prototype would help to gather more requirements, which they felt supported the need
for an initial seed product. One such product was a geometry automation framework
(GAF). Whereas engineers can manually “point and click” designs using a CAD system,
the GAF offers frequently needed design constructs. The developers of GAF expected
that its users would identify new use-cases and require additional functionality over
time. This need for future extensions would make the GAF a particularly interesting
candidate for an Inner Source project.

Another promising project we identified was a tool integration framework (TIF). The
TIF is a framework that implements a certain workflow, by integrating and invoking a
variety of analysis tools that are specific for a certain group (e.g., turbines, compressors).
What is common is the workflow and integration capability, but the actual analysis
tools that are ‘plugged in’ (and invoked by the framework) differ per group. The project
lead for the TIF described how it already resembled the start of an Inner Source
project.

“I gave the source code to the folks of the turbine group that were supporting
TIF, and I said, you can pick this up and use it and start swapping out the
compressor codes with turbine code. There’s 3 different groups now, different
parts of our organization that are all supporting the TIF project.” (R6)

Given that the TIF offers potentially significant benefit (and thus, value) to the
organization, this project would therefore be a suitable seed product.

5.1.2. Multiple Stakeholders for Variety in Contributions. Philips is a large organization with
many product groups that use the Inner Source project as a platform. It is used in more
than 300 products delivered by more than ten product groups. Such a large number of
stakeholders offers opportunities for large-scale reuse, which is why software offering
common functionality is an appropriate choice for a shared asset.

We found that such a large number of different stakeholders also comes with chal-
lenges. One challenge in particular is that there are many requirements coming from
the various different teams, and the platform team forms a bottleneck. This was one
of the reasons that Philips started their Inner Source initiative in the first place, to
address this bottleneck. However, the platform team, which plays the role of the core
team managing the Inner Source project still has limited capacity. Getting product
groups to implement their own requirements has been a challenge.

The candidate components identified at Neopost and Rolls-Royce also have poten-
tially many stakeholders. The HAL just mentioned provides generic functionality
needed in virtually all products and will be used in all future machines that Neo-
post develops. In fact, one participant described how the HAL component would be
suitable as an Inner Source project.

“I can see that work for HAL, to make some kind of OSS development envi-
ronment for that, so that everybody could contribute.” (N7)

One issue we identified in our study is that, while the number of stakeholders in
terms of future projects is quite high, the number of developers is rather limited in
the visited location of Neopost. This somewhat limits the potential for a wide range
of input in terms of requirements, innovative ideas, and so on. A limited number of

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:18 K. Stol et al.

developers means that they may have limited time to spare to work on the development
of a shared asset.

At Rolls-Royce, the geometry automation library has potentially many users through-
out the global organization (approx. 1,600). As one participant indicated, “the potential
is huge, really, because geometry is at the heart.” One issue that was raised by the
interviewees is that the GAF is a new development, and as such, using it will change
the users’ workflow.

“we’re reshaping their work. So, we’re telling them to automate their CAD
rather than doing their CAD manually.” (R2)

Therefore, it is important that benefits of using the GAF are clearly demonstrated to
potential users. One of the interviewees indicated that, for the GAF project to succeed,
a ‘pull’ from the stakeholder needs to be created. But, as the project lead clarified,
“Generally people invest the time because they find it useful. They select themselves.”

The intent for the GAF project is to have users propose new use cases, which can
then be implemented as new features or functionality. Initially, the GAF was targeted
towards a single customer within Rolls-Royce, but since other groups have similar re-
quirements, the development group are broadening the scope by looking across various
business units within Rolls-Royce.

5.1.3. Modularity to Attract Contributors and Users. Philips’ shared asset is a large (several
millions of lines of code) and still growing piece of software. The platform initially
started out as a ‘component suite,’ and this model was quite successful. However, the
combination of different uses of the components yielded suboptimal results, in that
the need for integration testing was not eliminated. For that reason, the core team
moved to delivering “component assemblies,” which are pre-integrated and tested half-
products that product groups can use. While the components may be modular, they are
not suitable for an à la carte approach, whereby only those components deemed useful
are selected, as one participant described.

“The components are not so rich that you can choose component A, B, C and
D. What you would do is configure the platform and within that configuration
you’d choose A, B, C or D. It’s more an integrated approach.” (P2)

At Neopost, we found that the HAL is a very modular component, whereby the
various hardware drivers are stored in separate files, which facilitates parallel devel-
opment. This was in stark contrast to another component that we identified, whose
main purpose is to read and decode instructions from a sheet of paper (as it is pro-
cessed in a machine). This component was closely coupled with a system application
(containing the graphical user interface) that uses it. One developer explained this as
follows:

“And instead of considering [it] as a component, it’s just a copy of the [system]
application [...] So, saying that you developed a ‘component’ is arguable,
because they really delivered a whole application with a small part that we
also use.” (N10)

In terms of complexity and modularity of the GAF at Rolls-Royce, the project lead was
mainly concerned about presentation. Providing a large amount of functionality was
not considered to be an obstacle, but presenting and documenting it in an accessible
way was considered to be a potential challenge, as the project lead explained, “I don’t
care [the user] has access to 10,000 functions and he only uses three, as long he’s not
bewildered by the other 9,997 that are available.”

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:19

A project lead working on a different candidate project found that modularity is very
important and that the initial modular design is currently broken up into an even finer
granularity, describing the rationale as follows:

“Primarily it’s to facilitate parallel development, in that, having it modular
means that we can pass a module to [others], with a clear set of require-
ments.” (R4)

5.2. Practices and Tools

5.2.1. Practices to Support Bazaar-Style Development. Philips, offering advanced systems
for the medical domain, is operating in a regulated environment and as such its de-
velopment process is subject to audits by regulators, such as the U.S. FDA. Philips
have extensive processes for how requirements move from product groups to the core
team. Formal channels for communicating requirements include issue trackers and
databases with “all sorts of procedures,” but there are also a number of informal
channels. These include mailing lists on which developers can provide support to people
in other product groups.

Though an open-source way of working suggests a central repository through which
developers can improve the code and make changes as they see fit, this is not the
case in Philips. While the source code of the common platform is accessible to all
business units (facilitating developers in inspecting and understanding how features
are implemented), individuals do not typically make changes directly, as one participant
explained, “It’s not like every developer can check out a piece of the platform, change it,
and check it back in.” Instead, a key concept in Philips’ Inner Source initiative is that
of co-development projects, whereby one or more members of the core team work closely
with a product group to develop (or enrich existing) functionality. Such ‘co-development’
of features ensures that the new software (a) adheres to the architecture of the shared
asset, and (b) implements the new functionality correctly as required by the product
group. A core team member that works closely with a product groups is what Gurbani
et al. [2010] termed a feature advocate.

Developers at Neopost follow the Scrum method to manage software projects, us-
ing three-week sprints. It is important to note that while software has an increas-
ingly important role in Neopost’s products and is becoming larger and more complex
over time, the role of software is to control a machine’s hardware. This means that
product development is driven by development of the hardware, and the software
development process must keep up. We found that Neopost does not have a formal
requirements elicitation process in place, but there are a number of sources that the
development team relies on. First, the most important source of requirements is the
marketing department, which represents the “customer” role in the Scrum method.
Other stakeholders throughout the organization also provide requirements, such as
service, manufacturing and hardware engineers. All people involved have extensive
domain knowledge, and as a result, developers know many of the requirements, given
the common features shared by all products. The maintainer of the HAL component
just mentioned responded similarly: “It was clear that we needed a hardware ab-
straction layer, and for me it was clear it had to be independent of the operating
system.”

We found that most maintenance tasks are of a corrective or adaptive nature
[Swanson 1976]. For instance, the maintainer of the HAL indicated that requested
corrections can be implemented in between jobs, but that there is little time for per-
fective maintenance in terms of design overhauls. Improvements such as porting the
existing code base from a 16 bit to a 32 bit processor are more time-consuming and
therefore may not be accomplished promptly.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:20 K. Stol et al.

Another participant also described how some of the development is already similar
to open-source development. In this particular case, the participant described how one
project implemented certain features in a component that did not have high priority
for its maintainer.

“They develop those things that they want, but don’t have a real priority for
us ... and then [N12] reviews the changes. [...] So, it hardly costs us any time,
and still [we] have the benefit that the component can do what they need.”
(N13)

One potential barrier to community-style maintenance is that of testing the changes
made to a common component, due to the embedded nature of the software and the va-
riety in hardware. Improvements for one machine may break functionality on another.

We found that the different teams at Rolls-Royce do not employ a strictly enforced
or formalized approach to software development in practice; typically this varies per
project and team. The approach taken by the GAF team was described as ‘agile.’ In
terms of maintenance as reinvention, we found that all groups are well aware of the
need to overhaul the design of certain software projects, which in certain cases does
happen.

“There’s a lot of maintenance that is just incremental. A particular bug,
in particular code. Every so often you look at it and say, OK, this needs
reinvention. What was nice and clean on day 1 is now spaghetti.” (R1)

One important issue that must be considered is that reinventing software tools that
are used to make CAD designs that are used in production will require validation with
respect to the old version of the software. As one participant explained, “You need
to accept the big burden of validation when rewriting it.” Product design is a time-
consuming activity, and remaking older designs using newer (reimplemented) versions
of the software tools may not be feasible.

5.2.2. Practices to Support Bazaar-Style Quality Assurance. The operations subdivision of
Philips’ core team has responsibility for the verification and testing of the platform
they deliver. Given the regulated domain, documentation on design and tests have
to be delivered. This team runs system (black box) tests. Unit tests (of individual
components) are white box tests. The operations team also supports product groups
in writing effective tests. In terms of frequent releases, the core team makes a new
release approximately twice a year. These are stable and versioned releases, which are
fully tested, documented, and supported. Since such releases represent new ‘versions’
of the platform accompanied with required test and design documentation, the core
team must ensure there are no open issues, which makes such releases more costly
and thus not very frequent.

Product groups also have the option to use a more recent snapshot that provides
more ‘cutting-edge’ functionality, much like development releases found in open-source
development [Michlmayr and Fitzgerald 2012]. These facilitate early feedback to the
core team, so that any issues can be resolved early. One product group leader described
this as follows:

“We sit very closely with the platform team, with as many integrations as
possible, and keep that feedback loop as short as possible, close to the OSS
model, and that works much better. Much less hassle and trouble.” (P6)

In terms of quality assurance at Neopost, we identified fragments of a bazaar-style
fashion, as one participant described.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:21

“I thought there was a bug in HAL [...]. I first solved it locally, and then as
some kind of review for the maintainer, sent it to him and said, I think this
is what’s wrong, and this is my solution.” (N7)

The maintainer of HAL described this as follows: “If they want to change something
in HAL, then they make a ‘diff ’ and send it to me for review. And if I think it’s no
problem, then I check it in.”

The approach to software testing in Neopost varies per project; some projects have
automatic unit test frameworks, whereas others have a more manual approach. The
nature of testing is difficult due to the fact that much of the software is embedded. At
machine level, a test department subjects the machines to extensive tests. After each
development sprint, the development team gives a demonstration of the current version
of the machine under development to Marketing, who provide immediate feedback. This
three-week sprint cycle ensures that the software is always in a runnable state whereas
the demonstrations and feedback help in delivering increasingly better versions of the
product.

In terms of quality assurance practices at Rolls-Royce, we found that some teams
are already using a regression test suite, which was characterized as semi-automated.
Some of the teams have a strong focus on tests, using a Test-Driven Development
(TDD) approach, and require new members of the core team to be well-versed in TDD.
Additionally, teams have realized that increasing the pace of releases is useful, as one
participant described.

“Two reasons really. One is the user impatience for fixes. The other is, it
seems to be easier to manage... less risky in each release. We went from
nearly never to a [release per] year and then to every 6 months, and now
every couple of months.” (R5)

5.2.3. Standardization of Tools for Facilitating Collaboration. Philips use a toolset that is pro-
vided using a Software-as-a-Service (SaaS) model by an external supplier. The core
team has an “Operations” subdivision that provides operational support for the de-
velopment environment that is rolled out throughout the organization. This ensures
that all product groups have the same development environment, which prevents the
various problems associated with different toolsets.

At Neopost, too, all developers at the visited location use the same integrated de-
velopment environment. Some teams use additional tools, for instance, one team uses
ReviewBoard8 which facilitates the coordination of a peer-review process. Most devel-
opment is done in C++ targeting embedded platforms and controllers. This focus on a
common technology reduces the need for a wide variety of development environments
and tools (e.g., compilers, debuggers).

In our case study at Rolls-Royce, we found that there is a wide variety of soft-
ware, written in COBOL, FORTRAN, C, C++, Java and Python. Furthermore, there
is a plethora of development environments and platforms, including variants of Unix,
Linux, and Microsoft Windows, as one participant explained, “We’re developing for
Unix, and multiple flavors of PC, which makes things very complicated.” Given this
large variety in technologies and platforms, the company also needs to maintain the
development environments and tools. An important consideration here is that the or-
ganization cannot afford the loss of design capability, which is why there must be a
tight control of the IT infrastructure. On the other hand, targeting development at
multiple platforms helps to increase the software’s robustness, as some compilers are
more ‘pedantic’ than others in terms of compiler errors.

8www.reviewboard.org.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:22 K. Stol et al.

Software development machines at Rolls-Royce are managed by a central IT depart-
ment that has responsibility for a wide range of machines throughout the organization.
The majority of these are not used for software development, and thus there is less
flexibility in terms of software tools that are made available.

5.3. Organization and Community

5.3.1. Coordination and Leadership to Support Meritocracy. In Philips, a Steering Committee
decides on the new features that will be delivered in the next version, which provides
a high-level form of coordination. Sometimes, the core team gives priority to certain
business units for a certain release when planning the implementation of new features.
Some groups are not eager to contribute but are more passively waiting for the platform
team to implement new functionality. By more actively contributing, a product group
gets more control over new features and functionality, which helps ensure that the new
code does what the product group needs. One participant remarked that the groups
involved from the beginning have been most successful in getting their requirements
implemented.

Neopost follows the Scrum methodology as previously mentioned, which provides
the overall framework for daily coordination, and therefore provides much flexibility.
Scrum meetings take place in the morning. At departmental level, all Scrum Masters
gather with the department manager on a weekly basis for a Scrum-of-Scrums meet-
ing. Software teams are co-located, which allows for quick, ad-hoc face-to-face meetings.
Software engineers tend to specialize in certain parts of the whole system, thus en-
abling them to continue working in parallel on the same system. This specialization
makes them the “contact person” for their particular subsystem. This suggests that
such a person has taken on the role of a “trusted lieutenant” (in bazaar-terminology),
which differentiates the process from the agile method (Scrum) that is followed. Agile
methods emphasize the concept of Collective Ownership, whereby the development
team as a whole is responsible for the code, and any developer may make changes
[Schwaber and Beedle 2002; Cohn 2009]. Another important factor at Neopost is that
machine development is hardware-driven, in that the software supports the hardware.
As a result, it is very important that software and hardware engineers coordinate
any changes amongst themselves as any changes in the hardware may have impact
on the software. Some projects organize weekly face-to-face meetings to achieve this
coordination.

Interviewees at Rolls-Royce felt that they had a relatively high level of freedom in
how they coordinated their work, thus facilitating a greater level of self-organization.
One participant explained it this way.

“There’s nothing really in place that coordinates our work beyond the in-
formal chats about what we need. What’s driving task selection for me is
talking to customers and seeing, what common geometry do I need to build.
There’s no gaffer [boss] coming along to say ‘you got to do this.’ ” (R2)

Furthermore, within teams developers work on different parts of the software,
thereby developing a certain level of speciality (which, similar to Neopost, facilitates
the emergence of “trusted lieutenants”). It is generally known within teams “who’s
doing what.” One participant highlighted the importance of a common vision and di-
rection for a project where different people are “trying to pull it in different directions.”
This suggests there is room for a benevolent dictator who coordinates and integrates
contributions by others.

5.3.2. Transparency to Open Up the Organization. Philips uses tools and infrastructure
provided by CollabNet to support an (internal) online community and facilitate a

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:23

transparent process. This includes a mailing list on which people can post questions
and comments. Developers and architects follow these lists and respond to issues that
they are familiar with. This does not mean that all communication is online; architects
still have face-to-face meetings to discuss architectural roadmaps. Chief architects also
provide training sessions targeting product groups. However, the day-to-day knowl-
edge sharing regarding issues and usage of the shared asset is greatly improved by the
online communication as one participant explained.

“Our Inner Source initiative really helps [for knowledge sharing] because we
see that the communication between developers is much more interactive.
Since we’ve changed from a central team that delivers a binary platform to
the new Inner Source model in which everybody could see the source code
and also contribute, we saw the community growing. People started to inform
each other about dos and don’ts about the design. And people found out much
quicker whether others were using the platform correctly. That community
became much more lively when we adopted the Inner Source model.” (P3)

Neopost’s internal LAN provides open access to all project artifacts to all employ-
ees. Source code is managed by a version control system, and other infrastructure
includes an issue tracker and a wiki installation that is used for sharing knowledge
and documentation. Thus, most of the infrastructure to facilitate an online community
is present. One potential issue is that of online communication. There are a few issues
that should be considered. First, the number of engineers in the R&D department is
small enough that people often know whom to talk to, so there is no need to ‘broad-
cast’ a question. On the other hand, the visited location also collaborates with teams
in France, the United Kingdom, and Vietnam. Such collaboration could potentially be
fertile contexts for online communities. One factor that must be considered here is that
of culture. There are large cultural differences between the teams in Vietnam and the
Netherlands, and even between the teams in France and the Netherlands. The culture
in the Dutch branch is rather open and liberal, whereas the branches in France and
Vietnam in particular are more hierarchical. Such cultural differences may cause a
reluctance among developers to post questions.

At Rolls-Royce, universal access and transparency of the development process is a
challenge that should be addressed prior to adopting Inner Source. Infrastructure to
support transparency and universal access varies widely throughout the organization.
Some software development areas, such as embedded software development, use highly
standardized infrastructure based on commercial solutions for file-sharing, whereas
other areas have little standardization, or use non-version controlled solutions that
may inhibit universal access. One of the attractions of Inner Source for Rolls-Royce is
the ability to reduce cost by adopting a common solution “stack.”

We also found that corporate firewalls are a major obstacle to sharing artifacts across
the globe. Some teams use secure collaboration platforms that are based on standard
commercial solutions, but these only offer ‘static’ (or read-only) sharing capabilities.
One project lead explained it as follows:

“I’ve been pushing for something like open source for a long time. I think,
having the ability to communicate and exchange ideas is missing. People are
coming to the table with lots of different skills, some kind of Inner Source
type of mechanism would really help with that.” (R4)

5.3.3. Management Support and Motivation to Involve People. Philips Management strongly
supports the Inner Source initiative. In the late nineties, management had started
initiatives to improve reuse, which resulted in a software product line organization
[van der Linden et al. 2007]. The organization has since acquired many companies,

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:24 K. Stol et al.

which have become product groups, all of which were encouraged to use the common
platform. The Inner Source initiative helped to address a number of issues related
to knowledge sharing, improving productivity. Furthermore, given the one-to-many
relationship between the platform team and the product groups, the former could prove
to be a bottleneck for the latter, an issue that could be alleviated by introducing Open
Source-development principles. However, while management support is imperative,
there is no central authority that prescribes to a product group what it should do, as a
director of the technology office explained.

“We don’t have the right to tell them, ‘tomorrow you’ll do this.’ That’s not
how it works; it’s more like building a case, discussing what would be wise.”
(P2)

Therefore, in order for any Inner Source initiative to succeed, product groups had to
buy in. One co-development coordinator explained this as follows:

“The driver to do this [collaboration] is to ensure that what’s implemented
works for us. It’s not to help others with that new functionality, it’s primarily
for us. But, once it’s finished, then you’d also discuss this beforehand with
the core team that the component can go back into the platform.” (P8)

Support at Neopost was mostly at the middle management level. Interest in Inner
Source at Neopost is mostly grounded in the organization’s goal to increase software
reuse. A number of years ago, a small development group was set up to (a) develop a
common reference architecture, and (b) develop common, reusable components within
that architecture to be used by all future projects. In effect, this group resembled a core
team that would manage a set of shared assets. However, due to the need for achieving
a quick time-to-market, at some point developers were needed in other projects, greatly
reducing the team’s capacity to continue its goal. Though management did support the
concept of a component group, resources were lacking to sustain this initiative.

“In general we can only develop within projects, so to say. That means that
you typically develop project-specific components. [...] That’s mostly a matter
of budget; there is no money.” (N4)

Developers also felt that resources in terms of time were limited to study other
people’s contributions or to answer questions, as explained by one developer, “it’s not
like we’re twiddling thumbs all the time, so you do need to have the time for it.”

We found a similar result at Rolls-Royce, where some departments had limited ca-
pacity in terms of staff and had to work on software with only a few developers. As a
result, there may be little scope for software development where it is not a core func-
tion. In fact, software development was not always recognized and considered to be an
important part of engine design. More recently, this situation changed and software is
now seen as playing an important role.

We also found that at a departmental level, there is much local support “for every-
thing we do,” as one participant phrased it. This is mainly due to a possibly dramatic
positive impact on the business. However, in the end, it is a matter of priorities as set
by higher-level management, who may not appreciate the “how” (i.e., Inner Source) as
much as the “what” (delivering high quality products). One participant explained it as
follows:

“It’s a priority thing, not a principle thing. Generally, management will say,
yes this is good stuff, do it, but do this other stuff as well (laughter).” (R5)

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:25

6. CONCLUSION AND FUTURE WORK

There have been several reports of organizations adopting open-source development
practices for their internal software development, what we term “Inner Source” in this
article. Despite an increasing interest, there has been little attention to the question as
to what factors contribute to an Inner Source initiative. Without this, organizations may
not have a clear understanding of what Inner Source is and how it works. To address
this practical need, in this article, we have presented a framework of factors that
support Inner Source. The framework has been rigorously derived from the scientific
literature, supported by a number of other sources such as book chapters. Therefore,
we argue that the framework provides a rich and sound starting point for supporting
Inner Source adoption.

In order to demonstrate and apply the framework in practice, we conducted three
industry case studies at organizations at varying points in the adoption of Inner
Source: Philips Healthcare, Neopost Technologies, and Rolls-Royce. The application
of the framework provides an in-depth account of how the factors, as identified in the
literature, “come to life” when applied to real-world contexts. We discuss our findings
(presented in Section 5) in Section 6.1. We then present an evaluation of our work as
well as a discussion of limitations of our study in Section 6.2. Section 6.3 presents an
outlook on future work.

6.1. Discussion

We can make a number of observations based on the findings presented in the previ-
ous section. Our discussion is organized using the three categories of the framework:
Software Product, Practices and Tools, and Organization and Community.

6.1.1. Software Product. The first category relates to the software that is to be man-
aged as an Inner Source project. In terms of identifying a ‘seed’ product, this was
fairly straightforward in the two case organizations that have not fully adopted Inner
Source (Neopost, Rolls-Royce). Interviewees immediately suggested potential products
(or components) that could be further developed in an Inner Source project. The need
for a shared asset to be reusable by a variety of users also seemed intuitive. In both
Neopost and Rolls-Royce, participants indicated how “this could work” for a specific
software component.

One issue that emerged from our findings is that there is a tension between attracting
a sufficient number of stakeholders to a new Inner Source project on the one hand, and
trying to balance a large number of stakeholders on the other hand. Maintaining this
balance will have a direct impact on how an Inner Source project is managed. For
instance, the shared asset at Philips is used in over 300 products by more than ten
product groups. Due to this large scale, there must be a tighter control by the core team
to accommodate all stakeholders needs. This is clearly the case at Philips, whose Inner
Source model focuses more on the engineering practices rather than the governance
practices found in open source.

While the participants in all three cases had clear ideas on the choice of software
that can serve as an Inner Source project, the nature and structure of the software
can vary widely. For instance, the platform at Philips evolved from a set of components
implementing an industry standard to an integrated base product that represents a
significant part of all products. While Neopost’s HAL serves a similar purpose in that it
offers a set of common functionality, its size and structure is much smaller and simpler
and does not have far-reaching consequences for the client application’s architecture.
Also, Philips’ platform stands in stark contrast to the GAF and TIF components devel-
oped at Rolls-Royce, which are essentially tools targeting design engineers rather than
a component that becomes part of a product.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:26 K. Stol et al.

6.1.2. Practices and Tools. In Section 4.2, we argued that there must be room for us-
ing ‘bazaar-style’ development and quality assurance practices for an Inner Source
project to thrive. However, from our case studies it becomes clear that this may mean
different things to different organizations. For instance, the Philips case illustrates
how open-source practices have been tailored to fit the specific corporate context (i.e.,
co-development projects). As briefly suggested in Section 6.1.1, the nature of the In-
ner Source product (in terms of scale and business value) may affect what practices
can be adopted. At Neopost, software development is very much driven by hardware
development and needs to keep up due to the strong interdependency of software and
hardware. At Rolls-Royce, there was a clear need for long-term compatibility and avail-
ability, thus limiting the potential for ‘reinvention’ of implementations. In all cases, we
conclude that an organization’s specific business needs and context affect which open-
source practices can be adopted, and how they are adopted.

In terms of using a common set of development tools, different organizations may
have varying challenges. Given that most development at Neopost is embedded soft-
ware, the range of software technologies used is rather homogeneous (i.e., C and C++).
At Rolls-Royce the variety was much larger, ranging from Python scripts to large legacy
code bases written in COBOL, thus requiring tool support for each of the used technolo-
gies. Philips have made a clear commitment to their Inner Source initiative and ensured
the required tools are available. Overall, the freedom to introduce new development
tools was not a trivial issue in the organizations that have not yet adopted Inner Source.

6.1.3. Organization and Community. Adopting Inner Source is, after all, an organizational
change, although the extent and degree of change will vary widely per organization. In
all three cases, we found that the nature of Inner Source adoption will depend on ex-
isting organizational structures and how amenable those structures are. We observed
in both Neopost and Rolls-Royce that certain developers take ownership of a certain
software component, which clearly suggests there is room for trusted lieutenants to
emerge. At the same time, it is very important that a core team provides overall
management of a shared asset: within Philips, the core team plays a pivotal role in
planning and participating in co-development projects. We also argue that trans-
parency is important (Section 4.3.2). Our study shows that this was a very impor-
tant point within Philips as it made their internal community “much more active”
(Section 5.3.2). However, introducing this transparency can be challenging for a num-
ber of reasons. First, when developers are co-located (as is the case for Neopost), there
may be little incentive to “take a conversation online.” Second, cultural differences be-
tween different divisions of an organization may limit participation. For that reason,
education, training, and advertising an Inner Source initiative to all involved develop-
ers is very important. Another issue is that of the necessary infrastructure required
for sharing development artifacts. Large organizations with various branches tend
to use different infrastructure for storing and sharing artifacts, and it can be quite
challenging to adopt an organization-wide standard for this.

Finally, while management support is an absolute requirement for Inner Source
adoption, there is a strong parallel to open-source projects, in that the developers in-
volved must be motivated and have sufficient incentives to adopt this model of working.
For an organization’s management, there may be various drivers, such as increasing
software reuse and reducing cost. However, while Inner Source can offer a number of
benefits, it is not a panacea [Stol et al. 2011]. The parties involved must be supported
with budgetary and other resources. The literature suggests that identifying cham-
pions and giving them the space to advocate an Inner Source initiative is essential
[Dinkelacker et al. 2002; Gurbani et al. 2006]. Our contacts at the case study organi-
zations are such champions; however, it is obviously a challenge to convince top-level

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:27

management to commit to an Inner Source initiative. In both Neopost and Rolls-Royce,
participants of our study suggested that while Inner Source initiatives are welcome,
in practice a lack of budget or time inhibits pursuing them fully. At Philips, the Inner
Source initiative has been widely advocated throughout the organization, and top-level
management have made a clear commitment to Inner Source.

6.2. Evaluation

In any research effort it is important to address the question of validity. The standard
validation criteria include items such as internal validity, external validity, reliabil-
ity, and objectivity [Guba 1981]. However, many authors have pointed out that these
criteria are better suited to evaluating quantitative research where constructs are
measured explicitly and traits, such as convergent and discriminant validity, are then
assessed [Creswell 2007, p. 203]. Such measurements are not typically feasible or prac-
tical in qualitative research studies [Leininger 1994]. As a consequence, researchers
have argued that trustworthiness is an appropriate way to judge the validity of qual-
itative research [Angen 2000; Creswell 2007; Guba 1981; Lincoln and Guba 1985]. In
operationalizing the trustworthiness criterion, Lincoln and Guba [1985] identified four
validation criteria for qualitative research as alternatives to the standard criteria pre-
viously mentioned that are typically adopted in quantitative research studies. These
are credibility (paralleling internal validity), transferability (external validity), depend-
ability (reliability), and confirmability (objectivity). These are also recommended by
Cruzes and Dybå [2011] as appropriate for assessing the trustworthiness of a research
study in a software engineering context. Previously, Sfetsos et al. [2006] used these in
a qualitative study of Extreme Programming. The following evaluation discusses how
each of these aspects of our study’s trustworthiness was addressed as well as some
limitations of our study. Some tactics (e.g., triangulation) help to address several of the
aspects below; they are discussed for each aspect separately.

6.2.1. Credibility. A study’s credibility refers to the extent to which we can place con-
fidence in the findings, or that the findings are plausible [Guba 1981]. One important
issue regarding our study’s credibility is the extent to which we have correctly identified
a set of factors that are relevant to Inner Source adoption. In other words, how does our
research design establish the credibility of these nine factors? We sought to establish
credibility of our findings through a number of approaches, which we discuss next.

Peer debriefing refers to discussing the research with others so as to expose it to
feedback by colleagues or practitioners, who can play devil’s advocate [Creswell and
Miller 2000]. We discussed the work at various occasions with colleagues in this area,
during which we received feedback related to the factors of the framework. In one
particular instance, we discussed each of the framework’s elements in great detail with
the initiators of a highly successful Inner Source project. During this process, we found
that all factors resonated with the initiators’ experiences, but some clarifications as
to how to interpret and phrase the factors were highlighted as well. Furthermore, we
engaged in a process that has been termed ‘venting’ [Goetz and LeCompte 1984], during
which we discussed the framework through informal conversation with a number of
practitioners interested in this topic at several occasions.

Triangulation is a technique that seeks convergence among multiple and different
sources of information; these can be different types of data, different investigators, or
different research methods. Whereas our framework was based on a synthesis of the
extant literature (a single data source), the empirical phase of our study involved three
case studies, thereby demonstrating its usability in three different contexts. In all three
contexts the framework solicited relevant input for each of the framework’s nine factors.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:28 K. Stol et al.

6.2.2. Transferability. Transferability refers to the extent to which a study’s findings
can be applied in other settings. In other words, this refers to the question: Is our
framework applicable in a variety of contexts? Guba [1981] presented some tactics to
assess transferability, which we discuss next.

Given that Inner Source is a relatively new phenomenon, we had to identify organi-
zations who would be active in Inner Source implementation. Thus, our sample of or-
ganizations has particular characteristics. Purposive sampling refers to a researcher’s
judgement as a principle of selection of participants or cases [Robson 2002]. That is, we
selected three cases that we believe were suitable to apply the framework. Philips was
selected as a case as they have an established track record of Inner Source adoption,
and therefore is a suitable choice to demonstrate that all factors of our framework are
relevant from an Inner Source perspective. The cases of Neopost and Rolls-Royce are
both also relevant for two reasons. First, both organizations were actively interested
in adopting Inner Source, and thus represent the target audience for the framework.
Second, both organizations have already started a number of initiatives that resem-
ble elements of Inner Source. For instance, some Neopost developers already used the
principle of ‘self-selecting’ a defect to work on, for which a patch was sent to the soft-
ware package’s maintainer. Also, other developers use peer-review as a practice, and
Neopost’s component group initiative resembled a core team.

In this study, we focused on large multi-national organizations in the private sector
with very significant software development functions. Although we deem our choice
of cases to be relevant, the choice was also affected by the organization’s willingness
to allow us to conduct the studies. One limitation of our study is that generalizations
cannot be drawn from these three cases, and other contexts may exist in which our
framework is less suitable. If we had studied different organizations with different
profiles, for example, small organizations or public sector companies, the reaction to
the framework and issues identified could be quite different.

Furthermore, the framework, while useful as a probing mechanism, was operational-
ized quite differently across the three case study organizations, even though they were
quite homogeneous. Thus, it would be interesting to see the differences in the frame-
work if applied to a heterogeneous sample of organizations.

“Thick” descriptions permit comparison of contexts that are considered relevant. As
Creswell and Miller [2000] pointed out, “the purpose of a thick description is that it
creates verisimilitude, statements that produce for the readers the feeling that they
have experienced, or could experience, the events being described in a study.” In order
to facilitate an understanding of the three cases, we have attempted to provide detailed
descriptions of the contexts at the three organizations. Nevertheless, it is challenging
to convey all details of a particular organization’s context to its full extent due to
space limitations. One potential limitation of our study, therefore, is that this feeling
of experience referred to by Creswell and Miller is only achieved to some extent.

6.2.3. Dependability. The dependability of a study refers to the ‘stability’ of data, or the
extent to which findings are reliable and any variance in those findings can be ‘tracked’
and explained. We used a number of tactics, described next.

In the empirical phase, for each of the three case studies, we drew from several
sources (see Table II), another form of triangulation. For instance, the case at Philips
was based on a number of existing reports on their Inner Source initiative, comple-
mented with an extensive set of interviews, as well as informal discussions with an
informed expert. The other two cases also drew from several sources.

Throughout the research process we established an audit trail, in both the derivation
of the framework and the empirical component of the study represented by the three
case studies. The derivation of the framework was done by capturing all relevant text

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:29

fragments of the literature in a spreadsheet and labeling these fragments with codes.
Sources were listed for all fragments so as to enable us to go back to the original
context from which a fragment was taken. Steps in the audit trail of the empirical
work include recording of all interviews, transcription of the interviews, and writing
and exchanging memos amongst the authors regarding both findings and research
design. The coding process and memos exchanged was performed over an extensive
time period (approx. one year).

6.2.4. Confirmability. Confirmability refers to the neutrality aspect of a study’s trust-
worthiness, and as such is concerned with a researcher’s predilections that may bias a
study’s findings. One such concern in qualitative studies is that of “multiple realities,”
referring to the subjectivity of the researcher’s understanding [Swanson and Chapman
1994, p. 75]. Furthermore, this may also be affected by the attitudes of the participants
involved in a study.

Member checking is one tactic we employed in our research design, which refers to
checking interpretations with members of groups from which data were solicited [Guba
1981; Creswell and Miller 2000]. We sent a draft of an earlier version of this article to
key informants at all three case study organizations for review and feedback.

Triangulation is a tactic previously discussed in relation to credibility and depend-
ability, and can also help to establish confirmability. For instance, in the derivation
of the framework, all factors were based on at least two references to the literature.
Therefore, none of the nine factors in the framework is based on a single source but
always ‘confirmed’ by a second source.

Notwithstanding the preceding, in our study, interviewees were already interested in
Inner Source adoption, and in a sense were already converts. Thus, the extent to which
they would view any obstacles as capable of being overcome, and their enthusiasm
to participate could skew their responses to our framework, in a manner that would
differ from more skeptical participants. In much the same way, the authors are also
advocates of Inner Source, and thus may be similarly blind to issues.

6.3. Future Work

This article contributes to the Inner Source literature by deriving a set of important
factors in the adoption of Inner Source. The concepts identified in the framework can
be used in future studies of Inner Source. We identified a number of directions to guide
future research, that are outlined next.

Phased Adoption Model. As mentioned earlier, open-source projects typically have a
Cathedral phase after which they transition to a Bazaar phase. In this article, we have
argued that this would also be necessary to initiate an Inner Source project. Gurbani
et al. [2006] described how the Inner Source project at Alcatel-Lucent evolved through
several stages. Wesselius [2008] described the evolution of the business model at Philips
Healthcare, from a traditional “taxing” model to a model that was more amenable to
an Inner Source approach. This suggests that the adoption of Inner Source follows a
number of phases to perform the cultural change within an organization. Identifying
these phases would be useful to better understand the steps to take to start an Inner
Source initiative, which in turn can provide concrete guidance to organizations.

Tailoring Dimensions. Each case of Inner Source is different and tailored to the con-
text of an organization. Whereas established methods, such as the agile methods Scrum
and XP, are well defined and their amenability to tailoring has been explored [Conboy
and Fitzgerald 2010], such tailoring is very different for Inner Source, which has no
documented reference model. Gurbani et al. [2010] have observed two general models
(infrastructure-based and project-specific), a further taxonomy of Inner Source adop-
tion is needed to better understand along which dimensions such initiatives can vary.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:30 K. Stol et al.

The factors identified in this article provide a useful starting point for this. This in turn
will also help to identify common Inner Source adoption patterns, which would provide
useful and practical guidance to other organizations that wish to adopt Inner Source.
One dimension that is of particular interest is governance. The self-organizing nature
found in open-source projects may not be suitable for most commercial organizations
that have product release schedules. The initial work by Gurbani et al. [2010] in which
they identified a number of key roles in the core team provides a useful starting point
for this. We expect other governance patterns to emerge over time.

Practices and Patterns in Inner Source. One concept that emerged from the Philips
case study is that of co-development. This is one form of translation, or ‘re-negotiation’
as Lindman et al. [2013] termed it, of open-source practices to a corporate environment.
For instance, where in open-source development it is quite normal to “check out” the
code, add a new feature (or correct a defect) and send a patch, the case of Philips
showed how this is managed through the concept of co-development. Nevertheless,
such practices (relating to the development practices factor of the framework) are
derived from the open-source philosophy and different from conventional approaches,
and thus still relevant to Inner Source. Further identification of such translations that
occur in Inner Source initiatives is an important step so they can be catalogued and
made available to other organizations that are interested in adopting Inner Source.
Whereas the current study has focused on factors that support Inner Source, we expect
that future work will provide detailed insights of suitable practices as well as how to
achieve many of the benefits associated with open-source development.

Emerging Practices and Tools. New developments, such as the emergence of new
tools have an impact on how developers achieve their tasks and communicate. For
instance, in recent years, the use of microblogging through sites such as Twitter and
Yammer are becoming increasingly popular, both in closed-source and open-source
environments [Wang et al. 2014]. Microblogging can help in building a community as
well as in communication. One particularly interesting trend is that each artifact can
have a link, through which it is immediately accessible to others. For instance, new
contributions (commits), issues recorded in an issue tracker, emails (on public mailing
lists), and bulletin boards all can have a link, which greatly helps in contributing to a
community’s transparency. How Inner Source organizations can benefit from this and
how such trends can help to establish Inner Source communities are open questions.

APPENDIX. RELEVANT SOURCES ON INNER SOURCE TO DATE

Table III. Relevant Sources on Inner Source Literature to Date

Year Authors Title
2001 Dinkelacker and

Garg
Corporate Source: Applying Open Source Concepts to a Corporate
Environment

2002 Dinkelacker
et al.a

Progressive Open Source

2002 Sharma et al. A framework for creating hybrid-open source software communities
2002 Robbins Adopting OSS Methods by Adopting OSS Tools
2005 Neus and Scherf Opening minds: Cultural change with the introduction of open-source

collaboration methods
2005 Robbinsb Adopting Open Source Software Engineering (OSSE) Practices by Adopting

OSSE Tools
2005 Goldman and

Gabriel
What is Open Source? (book chapter in ‘Innovation Happens Elsewhere’)

2005 Gurbani et al. A Case Study of Open Source Tools and Practices in a Commercial Setting
2006 Gurbani et al.c A Case Study of a Corporate Open Source Development Model

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:31

Table III. Continued

Year Authors Title
2007 Martin and

Hoffman
An Open Source Approach to Developing Software in a Small Organization

2007 Pulkkinen et al. Support for Knowledge and Innovations in Software Development -
Community within Company: Inner Source Environment

2007 Gaughan et al. An Examination of the Use of Inner Source in Multinational Corporations
2007 Smith and

Garber-Brown
Traveling the Open Road: Using Open Source Practices to Transform Our
Organization

2007 Melian Progressive Open Source: The Construction of a Development Project at
Hewlett-Packard

2008 Wesselius The Bazaar inside the Cathedral: Business Models for Internal Markets
2008 Lindman et al. Applying Open Source Development Practices Inside a Company
2008 Melian and

Mähring
Lost and Gained in Translation: Adoption of Open Source Software
Development at Hewlett-Packard

2008 Oor and
Krikhaar

Balancing Technology, Organization, and Process in Inner Source

2009 Riehle et al. Open Collaboration within Corporations Using Software Forges
2009 van der Linden Applying Open Source Software Principles in Product Lines
2009 Lindman et al. OSS as a way to sell organizational transformation
2009 Stellman et al. Inner Source (book chapter in ‘Beautiful Teams’)
2009 Gaughan et al. An Examination of the use of Open Source Software Processes as a Global

Software Development Solution for Commercial Software Engineering
2010 Lindman et al. Open Source Technology Changes Intra-Organisational Systems

Development–A Tale of Two Companies
2010 Vitharana et al. Impact of Internal Open Source Development on Reuse: Participatory Reuse

in Action
2010 Gurbani et al. Managing a Corporate Open Source Software Asset
2011 Morgan et al. Exploring Inner Source as a Form of Intra-Organisational Open Innovation
2011 Torkar et al. Adopting Free/Libre/Open Source Software Practices, Techniques and

Methods for Industrial Use
2011 Martin and

Lippold
Forge.mil: A Case Study for Utilizing Open Source Methodologies Inside of
government

2011 Stol et al. A Comparative Study of Challenges in Integrating Open Source Software
and Inner Source Software

2011 Stol Supporting Product Development with Software from the Bazaar
2013 Lindman et al. Open Source Technology in Intra-Organisational Software

Develompent–Private Markets or Local Libraries

aRevision of Dinkelacker and Garg [2001].
bRevision of Robbins [2002].
cRevision of Gurbani et al. [2005].

ACKNOWLEDGMENTS

We are grateful to all participants of our study at the three case study organizations for their time and input.
We wish to thank Lorraine Morgan for fruitful discussions on the framework presented in this article. We
also thank the anonymous reviewers whose constructive comments have led to significant improvements.

REFERENCES

Pär J. Ågerfalk and Brian Fitzgerald. 2008. Outsourcing to an unknown workforce: Exploring opensourcing
as a global sourcing strategy. MIS Quart. 32, 2, 385–409.

Allan Alter. 2006. Can IT use open source methods to write internal code? CIO Insight, http://www.
cioinsight.com/c/a/Expert-Voices/Can-IT-Use-Open-Source-Methods-To-Write-Internal-Code/.

Maureen Jane Angen. 2000. Evaluating interpretive inquiry: Reviewing the validity debate and opening the
dialogue. Qualitat. Health Res. 10, 3 , 378–395.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:32 K. Stol et al.

Matt Asay. 2007. Microsoft Office experiments with open source (development). O’Reilly ONLamp.
http://www.oreillynet.com/onlamp/blog/2007/02/microsoft_office_experiments_w.html.

Jai Asundi. 2001. Software engineering lessons from open source projects. In Proceedings of the 1st Work-
shop on Open Source Software Engineering. Joseph Feller, Brian Fitzgerald, and André van der
Hoek (Eds.).

Jai Asundi and Rajiv Jayvant. 2007. Patch review processes in open source software development communi-
ties: A comparative case study. In Proceedings of the 40th Annual Hawaii International Conference on
Systems Sciences (HICSS).

Larry Augustin, Dan Bressler, and Guy Smith. 2002. Accelerating software development through collabora-
tion. In Proceedings of the 24th International Conference on Software Engineering. 559–563.

Carliss Y. Baldwin and Kim B. Clark. 2006. The architecture of participation: Does code architecture mitigate
free riding in the open source development model? Manag. Sci. 52, 7, 1116–1127.

Liz Barnett. 2004. Applying open source processes in corporate development organizations. Forrester Report.
Betanews. 2005. IBM turns to open source development. http://betanews.com/2005/06/13/ibm-turns-to-

open-source-development/%.
Andrea Bonaccorsi and Cristina Rossi. 2003. Why open source software can succeed. Res. Policy 32, 7,

1243–1258.
Frederick P. Brooks. 1995. The Mythical Man-Month. Addison Wesley Longman, Inc.
Peter G. Capek, Steven P. Frank, Steve Gerdt, and David Shields. 2005. A history of IBM’s open-source

involvement and strategy. IBM Syst. J. 44, 2, 249–257.
Andrea Capiluppi, Klaas-Jan Stol, and Cornelia Boldyreff. 2012. Exploring the role of commercial stake-

holders in open source software evolution. In Open Source Systems: Long-Term Sustainability, Imed
Hammouda, Björn Lundell, Tommi Mikkonen, and Walt Scacchi (Eds.), Springer, 178–200.

Mike Cohn. 2009. Succeeding with Agile: Software Development Using Scrum. Addison-Wesley.
Kieran Conboy and Brian Fitzgerald. 2010. Method and developer characteristics for effective agile method

tailoring: A study of XP expert opinion. ACM Trans. Softw. Eng. Methodol. 20, 1 (2010).
John W. Creswell. 2007. Qualitative Inquiry & Research Design 2nd Ed. SAGE Publications.
John W. Creswell and Dana L. Miller. 2000. Determining validity in qualitative inquiry. Theory Pract. 39, 3,

124–130.
Kevin Crowston, Qing Li, Kangning Wei, U. Yeliz Eseryel, and James Howison. 2007. Self-organization of

teams for free/libre open source software development. Inf. Softw. Technol. 49, 6, 564–575.
Daniela S. Cruzes and Tore Dybå. 2011. Recommended steps for thematic synthesis in software engineering.

In Proceedings of the 5th International Symposium on Empirical Software Engineering and Measure-
ment. 275–284.

Jamie Dinkelacker and Pankaj K. Garg. 2001. Corporate source: Applying open source concepts to a corporate
environment. In Proceedings of the 1st Workshop on Open Source Software Engineering. Joseph Feller,
Brian Fitzgerald, and André van der Hoek (Eds.).

Jamie Dinkelacker, Pankaj K. Garg, Rob Miller, and Dean Nelson. 2002. Progressive open source. In Pro-
ceedings of the 24th International Conference on Software Engineering. 177–184.

Hakan Erdogmus. 2009. A process that is not. IEEE Softw. 26, 6, 4–7.
Justin R. Erenkrantz. 2003. Release management within open source projects. In Proceedings of the 3rd

Workshop on Open Source Software Engineering. Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and
Karim R. Lakhani (Eds.).

Justin R. Erenkrantz and Richard N. Taylor. 2003. Supporting distributed and decentralized projects: Draw-
ing lessons from the open source community. In Proceedings of the 1st Workshop on Open Source in an
Industrial Context. Marc Sihling (Ed.).

FCW. 2009. DOD launches site to develop open-source software. Federal Computer Week. http://fcw.com/
articles/2009/01/30/dod-launches-site-to-develop-open-source-software.aspx.

Joseph Feller and Brian Fitzgerald. 2002. Understanding Open Source Software Development. Pearson
Education Ltd.

Brian Fitzgerald. 2006. The transformation of open source software. MIS Quart. 30, 3, 587–598.
Brian Fitzgerald. 2011. Open source software: Lessons from and for software engineering. IEEE Computer

44, 10, 25–30.
Karl Fogel. 2005. Producing Open Source Software: How to Run a Successful Free Software Project. O’Reilly

Media.
Martin Fowler and Jim Highsmith. 2001. The agile manifesto. Softw. Develop. 9, 28–32.
Cristina Gacek and Budi Arief. 2004. The many meanings of open source. IEEE Softw. 21, 1, 34–40.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:33

Gary Gaughan, Brian Fitzgerald, Lorraine Morgan, and Maha Shaikh. 2007. An examination of the use of
inner source in multinational corporations. In Proceedings of the 1st OPAALS Conference.

Gary Gaughan, Brian Fitzgerald, and Maha Shaikh. 2009. An examination of the use of open source software
processes as a global software development solution for commercial software engineering. In Proceedings
of the 35th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). 20–27.

Judith Goetz and Margeret D. LeCompte. 1984. Ethnography and Qualitative Design in Educational Re-
search. Academic Press.

Ron Goldman and Richard P. Gabriel. 2005. Innovation Happens Elsewhere. Morgan Kaufmann, Chapter 3:
What is Open Source?

Egon G. Guba. 1981. Criteria for assessing the trustworthiness of naturalistic inquiries. Edu. Commun.
Technol. 29, 2, 75–91.

Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. 2005. A case study of open source tools and practices
in a commercial setting. In Proceedings of the 5th Workshop on Open Source Software Engineering, Joseph
Feller, Brian Fitzgerald, Scott A. Hissam, Karim Lakhani, and Walt Scacchi (Eds.).

Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. 2006. A case study of a corporate open source
development model. In Proceedings of the 28th International Conference on Software Engineering. 472–
481.

Vijay K. Gurbani, Anita Garvert, and James D. Herbsleb. 2010. Managing a corporate open source software
asset. Commun. ACM 53, 2, 155–159.

T. J. Halloran and William L. Scherlis. 2002. High quality and open source software practices. In Proceedings
of the 2nd Workshop on Open Source Software Engineering. Joseph Feller, Brian Fitzgerald, Frank
Hecker, Scott A. Hissam, Karim Lakhani, and André van der Hoek (Eds.).

James D. Herbsleb and Rebecca E. Grinter. 1999. Architectures, coordination, and distance: Conway’s Law
and beyond. IEEE Softw. 16, 5, 63–70.

Madeleine Leininger. 1994. Evaluation criteria and critique of qualitative research studies. In Critical Issues
in Qualitative Research Methods, Janice M. Morse (Ed.), SAGE Publications.

Yvonne S. Lincoln and Egon G. Guba. 1985. Naturalistic Inquiry. SAGE Publications.
Juho Lindman, Mikko Riepula, Matti Rossi, and Pentti Marttiin. 2013. Open source technology in intra-

organisational software development–private markets or local libraries. In Managing Open Innovation
Technologies, Jenny Ericsson Lundstrom, Mikael Wiberg, Stefan Hrastinski, Mats Edenius, and Pär J.
Ågerfalk (Eds.), Springer.

Juho Lindman, Matti Rossi, and Pentti Marttiin. 2008. Applying open source development practices inside
a company. In Open Source Development, Communities and Quality, Barbara Russo, Ernesto Damiani,
Scott Hissam, Björn Lundell, and Giancarlo Succi (Eds.), Springer, 381–387.

Juho Lindman, Matti Rossi, and Pentti Marttiin. 2009. OSS as a way to sell organizational transformation.
In Proceedings of the Information Systems Research Seminar in Scandinavia.

Juho Lindman, Matti Rossi, and Pentti Marttiin. 2010. Open source technology changes intra-organizational
systems development–A tale of two companies. In Proceedings of the 18th European Conference on
Information Systems.

Alan MacCormack, John Rusnak, and Carliss Y. Baldwin. 2006. Exploring the structure of complex software
designs: An empirical study of open source and proprietary code. Manage. Sci. 52, 7, 1015–1030.

Guy Martin and Aaron Lippold. 2011. Forge.mil: A case study for utilizing open source methodologies
inside of government. In Open Source Systems: Grounding Research, Scott Hissam, Barbara Russo,
Manuel Gomes de Mendonça Neto, and Fabio Kon (Eds.), Springer, 334–337.

Ken Martin and Bill Hoffman. 2007. An open source approach to developing software in a small organization.
IEEE Softw. 24, 1, 46–53.

Steven C. McConnell. 1999. Open-source methodology: Ready for prime time? IEEE Softw. 16, 4, 6–8.
Catharina Melian. 2007. Progressive open source. Ph.D. Dissertation. Stockholm School of Economics.
Catharina Melian and Magnus Mähring. 2008. Lost and gained in translation: Adoption of open source

software development at Hewlett-Packard. In Open Source Development, Communities and Quality,
Barbara Russo, Ernesto Damiani, Scott Hissam, Björn Lundell, and Giancarlo Succi (Eds.), Springer.

Janne Merilinna and Mari Matinlassi. 2006. State of the art and practice of open source component in-
tegration. In Proceedings of the 32nd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). 170–177.

Martin Michlmayr and Brian Fitzgerald. 2012. Time-based release management in free and open source
(FOSS) projects. Int. J. Open Source Softw. Process. 4, 1, 1–19.

Audris Mockus, Roy T. Fielding, and James D. Herbsleb. 2002. Two case studies of open source software
development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol. 11, 3, 309–346.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

18:34 K. Stol et al.

Audris Mockus and James D. Herbsleb. 2002. Why not improve coordination in distributed software de-
velopment by stealing good ideas from open source?. In Proceedings of the 2nd Workshop on Open
Source Software Engineering. Joseph Feller, Brian Fitzgerald, Frank Hecker, Scott A. Hissam, Karim R.
Lakhani, and André van der Hoek (Eds.), 19–25.

Lorraine Morgan, Joseph Feller, and Patrick Finnegan. 2011. Exploring inner source as a form of intraor-
ganisational open innovation. In Proceedings of the 19th European Conference on Information Systems.

Andreas Neus and Philipp Scherf. 2005. Opening minds: cultural change with the introduction of open-source
collaboration methods. IBM Syst. J. 44, 2, 215–225.

Todd Ogasawara. 2008. Microsoft CodeBox: Lessons from the open source community. http://www.
oreillynet.com/onlamp/blog/2008/05/microsoft_codebox_lessons_from.html.

Patrick Oor and René Krikhaar. 2008. Balancing technology, organization, and process in inner source:
Bringing inner source to the TOP. In Dagstuhl Seminar Proceedings. http://drops.dagstuhl.
de/opus/volltexte/2008/1548.

Tim O’Reilly. 1999. Lessons from open source software development. Commun. ACM 42, 4, 33–37.
Tim O’Reilly. 2000. O’Reilly network: Ask Tim: Is licensing what makes open source succeed? http://www.

linuxtoday.com/infrastructure/2000121601306OPCYSW.
David L. Parnas. 1972. On the criteria to be used in decomposing systems into modules. Commun. ACM 15,

12, 1053–1058.
Mirja Pulkkinen, Oleksiy Mazhelis, Pentti Marttiin, and Jouni Meriluoto. 2007. Support for knowledge

and innovations in software development—Community within company: Inner source environment. In
Proceedings of the 3rd International Conference on Web Information Systems and Technologies. 141–150.

Eric S. Raymond. 2001. The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary. O’Reilly Media.

Dirk Riehle, J. Ellenberger, T. Menahem, B. Mikhailovski, Y. Natchetoi, B. Naveh, and T. Odenwald. 2009.
Open collaboration within corporations using software forges. IEEE Softw. 26, 2, 52–58.

Bram Riemens and Kees van Zon. 2006. PFSPD short history. http://pfspd.sourceforge.net/history.
html.

Peter C. Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and Daniel M. German. 2012.
Contemporary peer review in action: Lessons from open source development. IEEE Softw. 29, 56–61.
Issue 6.

Peter C. Rigby, Daniel M. German, and Margaret-Anne Storey. 2008. Open source software peer review
practices: A case study of the Apache Server. In Proceedings of the 30th International Conference on
Software Engineering. ACM, 541–550.

Jason Robbins. 2002. Adopting OSS methods by adopting OSS tools. In Proceedings of the 2nd Workshop
on Open Source Software Engineering. Joseph Feller, Brian Fitzgerald, Frank Hecker, Scott A. Hissam,
Karim R. Lakhani, and André van der Hoek (Eds.).

Jason Robbins. 2005. Adopting open source software engineering (OSSE) practices by adopting OSSE tools.
In Perspectives on Free and Open Source Software, Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and
Karim R. Lakhani (Eds.), MIT Press, 245–264.

Colin Robson. 2002. Real World Research (2nd Ed.). Blackwell Publishers.
Winston W. Royce. 1987. Managing the development of large software systems. In Proceedings of the 9th

International Conference on Software Engineering. Originally published in Proceedings of WESCON’70.
328–338.

Per Runeson, Martin Höst, A. Rainer, and Björn Regnell. 2012. Case Study Research in Software Engineering:
Guidelines and Examples. John Wiley & Sons, Inc., Hoboken, NJ.

Walt Scacchi. 2004. Free and open source development practices in the game community. IEEE Softw. 21,
1, 59–66.

Ken Schwaber and Mike Beedle. 2002. Agile Software Development with Scrum. Prentice Hall.
Andrew Schwarz, Manjari Mehta, Norman Johnson, and Wynne W. Chin. 2007. Understanding frameworks

and reviews: A commentary to assist us in moving our field forward by analyzing our past. SIGMIS
Data B. Adv. Inf. Syst. 38, 3, 29–50.

Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software engineering. IEEE Trans.
Softw. Eng. 25, 4, 557–572.

Anthony Senyard and Martin Michlmayr. 2004. How to have a successful free software project. In
Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC).

Panagiotis Sfetsos, Lefteris Angelis, and Ioannis Stamelos. 2006. Investigating the extreme programming
system–An empirical study. Empirical Softw. Eng. 11, 2, 269–301.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

Key Factors for Adopting Inner Source 18:35

Srinarayan Sharma, Vijayan Sugumaran, and Balaji Rajagopalan. 2002. A framework for creating
hybrid-open source software communities. Inf. Syst. J. 12, 1, 7–25.

Phillip Smith and Chris Garber-Brown. 2007. Traveling the open road: Using open source practices to
transform our organization. In Proceedings of the Agile Conference (AGILE). IEEE.

Andrea Stellman, Jennifer Greene, and Auke Jilderda. 2009. Inner source. In Beautiful Teams: Inspiring
and cautionary Tales from Veteran Team Leaders, Andrew Stellman and Jennifer Greene (Eds.), O’Reilly
Media, 103–111.

Klaas-Jan Stol. 2011. Supporting product development with software from the bazaar. Ph.D. Dissertation.
University of Limerick.

Klaas-Jan Stol, Muhammad Ali Babar, Paris Avgeriou, and Brian Fitzgerald. 2011. A comparative study
of challenges in integrating open source software and inner source software. Inf. Softw. Technol. 53, 12,
1319–1336.

E. Burton Swanson. 1976. The dimensions of maintenance. In Proceedings of the 2nd International
Conference on Software Engineering. 492–497.

Janice M. Swanson and Linda Chapman. 1994. Inside the black box: Theoretical and methodological
issues in conducting evaluation research using a qualitative approach. In Critical Issues in Qualitative
Research Methods, Janice M. Morse (Ed.), SAGE Publications.

Darryl K. Taft. 2005. IBM adopts open development internally. http://www.eweek.com/c/a/Linux-and-
Open-Source/IBM-Adopts-Open-Development-Internally/.

Darryl K. Taft. 2006. IBM to employ open-source development style for tools. http://www.eweek.com/c/a/
Application-Development/IBM-to-Employ-OpenSource-Development-Style-for-Tools/.

Darryl K. Taft. 2009. Community-source development appeals in tough times. http://mobile.eweek.
com/c/a/Application-Development/CommunitySource-Development-Appeals-in-Tough-Times/.

Richard Torkar, Pau Minoves, and Janina Garrigós. 2011. Adopting free/libre/open source software practices,
techniques and methods for industrial use. J. Associ. Inf. Syst. 12, 1, 88–122.

Linus Torvalds. 1999. The Linux edge. In Open Sources: Voices from the Open Source Revolution, Chris
DiBona, Sam Ockman, and Mark Stone (Eds.), O’Reilly Media.

Linus Torvalds. 2000. Linux Kernel mailing list. https://lkml.org/lkml/2000/8/25/132.
Frank van der Linden. 2009. Applying open source software principles in product lines. UPGRADE X, 3,

32–40.
Frank van der Linden, Björn Lundell, and Pentti Marttiin. 2009. Commodification of industrial software: A

case for open source. IEEE Softw. 26, 4, 77–83.
Frank van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software Product Lines in Action: The Best

Industrial Practice in Product Line Engineering. Springer.
June M. Verner, J. Sampson, V. Tosic, N.A. Abu Bakar, and Barbara A. Kitchenham. 2009. Guidelines for

industrially-based multiple case studies in software engineering. In Proceedings of the 3rd International
Conference on Research Challenges in Information Science. IEEE, 313–324.

Padmal Vitharana, Julie King, and Helena Shih Chapman. 2010. Impact of internal open source development
on reuse: Participatory reuse in action. J. Manage. Inf. Syst. 27, 2, 277–304.

Xiaofeng Wang, Ilona Kuzmickaja, Klaas-Jan Stol, Pekka Abrahamsson, and Brian Fitzgerald. 2014.
Microblogging in open source software development: The case of Drupal using Twitter. IEEE Softw.
DOI:10.1109/MS.2013.98.

Jacco Wesselius. 2008. The bazaar inside the cathedral: Business models for internal markets. IEEE Softw.
25, 3, 60–66.

Robert K. Yin. 2003. Case Study Research: Design and Methods (3rd. Ed.). SAGE Publications, Thousand
Oaks, CA.

Received July 2012; revised April, August 2013; accepted September 2013

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 18, Pub. date: March 2014.

