What Is Generative AI Good For? Introduction to the Special Issue on Generative Al in
Software Engineering

Viktoria Stray*®, Geir Kjetil Hanssen®, Astri Barbala®, Darja Smite?, Klaas-Jan Stol®

@University of Oslo, Oslo, Norway
bSINTEF, Norway
“University of Galway, Ireland
dBlekinge Institute of Technology, Sweden
¢University College Cork, Ireland

Abstract

A major question that can be asked of any new major technology or innovation is: what is it good for? For this special issue, we
invited manuscripts that answer exactly that question in the context of Generative Al and Software Engineering. We received 33
submission, which underwent a rigorous peer review process. This process led to inclusion of 13 manuscripts, which we organized
according to McGrath’s Group Task typology in this editorial. In doing so, we acknowledge that not all tasks are equal, and we
demonstrate the breadth of tasks that GenAl can assist in. This set of curated articles provides a variety of interesting applications
and studies of GenAl technology. We conclude this editorial with an outlook on the future.

1. Introduction

Generative Al (GenAl) has become a major theme of great
interest to both academic researchers as well as professionals in
the software industry. GenAl refers to a category of tools and
algorithms that can create new output based on an extensive set
of inputs (training data). Current GenAl tools that are highly
relevant to software engineering (SE) include GitHub Copilot
and ChatGPT, as they can generate source code given a prompt,
which serves as a specification. This appears to be a natural
fit for SE, given the field has traditionally had a strong focus
on requirements, which are frequently expressed in natural lan-
guage. GenAl tools can be used in all phases of the software
development lifecycle (whichever process is followed), includ-
ing code generation, testing, and debugging. The possibilities
and challenges seem almost limitless. While many studies of
GenAl have started to appear, we are only scratching the surface
of the impact of this new type of technology.

This special issue sought to present a collection of papers that
present different aspects of, and perspectives on, GenAl in an
SE context, and as such to represent a snapshot of research as a
collection of curated papers that can provide a useful entry point
for both researchers entering the field, software practitioners,
and software managers. We received a total of 33 manuscripts;
each of which was screened, and 25 were subjected to a rigorous
peer review process involving three reviewers per manuscript.
Out of those, we accepted 13 manuscripts.

The focus of this special issue is on a wide range of questions
on how GenAl can be used in SE, but also on the challenges
and consequences of adopting this technology in SE. As such,
the special issue seeks to provide a holistic overview of GenAl
in SE. While GenAl will have no doubt a major impact on SE
practice, there are numerous open questions that have remained

Preprint submitted to Information and Software Technology

unanswered. For example:

* What benefits does GenAl bring to organizations and indi-
vidual users?

* How does GenAl influence SE practices?

* What factors might play a role in deciding whether or not
to adopt GenAl technology?

* What challenges does adopting GenAl bring?
* What do developers think of GenAI?

* Are GenAl tools useful for specific tasks like code trans-
lation and trace generation of modeling operations?

» Can GenAl tools be used to identify security bug reports?

* Can GenAl technology be used to generate fixes for soft-
ware vulnerabilities?

* How should developers choose from multiple GenAl-
generated code solutions?

* What GenAl technology perform the best given certain
criteria, such as performance and response time?

The articles in this special issue answer variants of these
questions. Each of these questions assumes that GenAl tech-
nologies are used for specific tasks, but it should be clear that
not all tasks are equal. In the next section, we adopt a task taxon-
omy from the group psychology literature that defines eight task
types, and organize the articles included in this special issue by
task type.

July 16, 2025

2. What is Generative AI Good For? An Overview of the
Articles in this Special Issue

Generative Al is heralded as representing a major paradigm
shift in virtually any aspect of our lives. GenAl will change
the way we live and do things. GenAl technology, currently
primarily in the form of Large Language Models (LLMs) and
Code Language Models (CLMs), are now increasingly used
to perform tasks, and LL.Ms have been suggested to be ‘team
members’ to achieve tasks. For example, LLMs have been used
as co-authors on papers [1].

To better understand what GenAlI technology is good for, it
is worthwhile analyzing what tasks GenAl might be good for.
The psychology literature has long focused on effective groups
as “task performance systems” and in that work there has been a
focus on differentiating among tasks; not all tasks are the same,
and therefore experiments will yield different results, depending
on the task at hand. One useful task taxonomy was proposed
by McGrath [2]; despite being over 40 years old, it appears to
be surprisingly relevant today. Since GenAl agents are now
increasingly seen as potential group members (or assistants), we
adopt McGrath’s task taxonomy, to better understand what types
of tasks GenAl has been used for. The taxonomy (see Figure 1),
which McGrath has referred to as the “task circumplex,” de-
fines eight task types organized in four main types of processes:
Generating (alternatives), Choosing (alternatives), Negotiating,
and Executing [2]. We briefly discuss these as a foundation to
understand how GenAl has been used in the articles included in
this special issue. The four main processes, and the eight task
types embedded within these processes, are assumed to happen
within a group of people. Instead of people, we shall refer to
group members as actors, recognizing that GenAl technology is
now frequently seen as an independent ‘agent’, and that some
humans within groups will be replaced by GenAl actors; the
processes therefore take place in a group that consists of both
humans and GenAlI agents.

In the remainder of this section, we discuss the four main
processes and the eight task types. It is important to keep in
mind that these eight task types form a continuum, rather than
distinct categories with sharp boundaries. Some tasks could fit
either of two adjacent task types. Some of the studies consider
multiple task types; in most cases, we discuss only one of those.
Notwithstanding, we argue that even an awareness of the notion
of different task types to analyze and reason about different tasks
that are performed with GenAl technology helps to gain insights
and theorize about the future of GenAl in software engineering
tasks. We position the 13 articles included in this special issue
along this continuum, noting that some of these articles could fit
several of the task type categories. This mapping illustrates the
variety of tasks for which GenAl technology has been used, rang-
ing from generation of solutions to coding problems to decision
tasks related to organizational adoption of GenAl technology.

2.1. Quadrant I: Generate Tasks

So-called ‘Generate’ tasks are collaborative. The goal is not
to determine a single best answer or to evaluate contributions of
different inputs, but rather to generate alternatives. Two types

of generate tasks can be distinguished [2]. Type 1 represents
Planning tasks, which are action-oriented (hence its position on
the right-hand side of the task circumplex); these are tasks that
identify some steps (actions) to achieve a goal. Type 2 represents
Creativity tasks; these are less action-oriented, but rather rely
on mental or cognitive effort (hence its position on the left-hand
side of the task circumplex).

An example of a Type 1 Task is to generate use-cases for
effective use of LLMs in startups. This is one of the activi-
ties performed by Thea Ahlgren, Helene Sunde, Kai-Kristian
Kemell and Anh Nguyen-Duc, in their article ““Assisting Soft-
ware Startups with LLMs: Effective Prompt Engineering
and System Instruction Design” [3]. Using a Design Science
research approach, they first identified a number of use-cases for
LLMs in startups. They then experimented with various prompt
patterns to optimize LLM responses for these use-cases. Finally,
they developed ‘StartupGPT, which is an LLM specifically tai-
lored for startups. This solution was evaluated with 25 startup
practitioners using multiple methods.

Another example of Type 1 tasks includes the use of LLMs
for project plan generation, which is one of 25 use-cases that
Kai-Kristian Kemell, Matti Aarikallio, Anh Nugyen-Duc, and
Pekka Abrahamsson identified in their article “Still Just Per-
sonal Assistants? — A Multiple Case Study of Generative Al
Adoption in Software Organizations” [4]. In their multi-case
study exploration of seven European companies, they identified
several benefits such as saving time on tasks, increased pro-
ductivity, and increased job satisfaction. However, the authors
also found several challenges to GenAl adoption in the compa-
nies, both on an organizational and an individual level: Where
organization-level challenges included data privacy and legisla-
tive concerns, individuals highlighted difficulties with prompt
engineering and concerns about the accuracy and reliability of
Al-generated outputs. Finally, as mentioned, they identified 25
different tasks that employees utilize GenAl tools for; while one
of them is a Type 1 task, several other task types can also be
identified which we discuss as part of the respective task types
below.

An example of a Type 2 Task is to use a Code Language
Model (CLM) to generate vulnerability security fixes. This is
what Guru Bhandari, Nikola Gavric, and Andrii Shalaginov pro-
pose in their article “Generating Vulnerability Security Fixes
with Code Language Models” [5]. They introduce PatchLM,
a model that is fine-tuned on code blocks linked to Common
Vulnerabilities and Exposures (CVEs), which significantly out-
performs existing CLMs such as CodeT5 and CodeLlama in
generating both accurate, robust, and relevant fixes. Their find-
ings demonstrate the value of tailoring CLMs for automated
program repair [6] and also open new directions for securing
software across diverse programming languages.

A second example of a Type 2 Task is the generation of
code solutions by GitHub Copilot. In their article “Don’t Settle
for the First! How Many GitHub Copilot Solutions Should
You Check?” [7], Julian Oertel, Jil Kliinder, and Regina Hebig
present a thorough evaluation of GitHub Copilot’s effectiveness
in assisting software engineers. Using a LeetCode dataset com-
prising of more than 2,000 coding problems and over 17,000

»

Collaborate 4

Quadrant Il
Choose

Type 3:
Intellective
tasks

Coordinate
Type 4:
Decision-
making
tasks
Conflict

Resolution ¢

<

Creativity

Quadrant |
Generate

Type 2: || Type 1:
Planning

tasks

Quadrant IV

tasks Execute

Type 8:
Performance
tasks

Type 7:
Contests /
competitive
tasks

Type 5:
Cognitive
conflict
tasks

Type 6:
Mixed-
motive
tasks

Quadrant lll
Negotiate

[

<

Cognitive-oriented

»

Action-oriented

Figure 1: McGrath’s Group Task Typology (adapted from McGrath [2])

solutions generated by GitHub Copilot, the authors explore opti-
mal strategies for using GenAl assistance in everyday software
development tasks.! Unexpectedly, the authors find that the
solutions generated by Copilot are not consistently ordered by
relevance or correctness. Although selecting the first suggestion
may seem convenient, the authors caution that it is less likely
to be correct. At the same time, checking ten solutions might
be too time-consuming. Based on their findings, the authors
thus recommend reviewing at least four-five solutions. Finally,
the study results suggest against relying on Copilot’s assistance
when dealing with uncommon, novel, or difficult problems, as
it’s suggestions may offer limited value and should be rather
used as a source of inspiration and not solution.

We note that several of the 25 SE tasks identified by Kemell
et al.’s article (mentioned above) can be classified as Type 2
tasks, for example code generation, comment and documentation
generation, and content generation for own product.

2.2. Quadrant II: Choose Tasks

Choose tasks are those where a choice is made between
alternatives. This quadrant also defines two task types [2]. In-
tellective tasks (Type 3) are those with a demonstrably correct
answer, whereas decision-making tasks (Type 4) are those where

11t is worth noting that the task of generating solutions is, obviously, a Task
2 (Generate), whereas the task of selecting a solution is a Choose task, and
depending on specifics, can be a Type 3 or Type 4 task, to be discussed below.

is no single correct answer, but rather when one alternative may
be preferable over another, depending on the criteria and the
judgment of the actors involved [2]. The ‘correct’ answer is
determined on the basis on a consensus of actors.

An example of a Type 3 task is the use of LLMs for selecting
relevant papers in systematic literature reviews. This is the topic
of the article “Exploring the Use of LLMs for the Selection
Phase in Systematic Literature Studies’ by Lukas Thode,
Umar Iftikhar, and Daniel Méndez [8]. The authors evaluated
five state-of-the-art LLMs on the task of classifying papers as
“include” or “exclude” based on their title and abstract, using two
completed SLRs as ground truth. Their results were cautiously
optimistic. In the best scenarios, a single LLM approach could
achieve approximately 98% recall, meaning it identified 98 out
of 100 relevant papers. For researchers, this suggests that LLMs
could soon serve as useful assistants in literature reviews, as
they can dramatically reduce the number of papers that need to
be manually screened by filtering out irrelevant studies, while
including nearly all the relevant ones.

An example of a Type 4 task is determining how GenAl
technology can be leveraged by software developers. This is the
topic of the article “Copiloting the future: How generative Al
transforms Software Engineering” by Leonardo Banh, Florian
Holldack, and Gero Strobel [9]. Based on interviews with 18
SE professionals, the authors developed a conceptual framework
outlining both the potential benefits and the practical challenges
of GenAl integration. On the benefits side, GenAl was found to

Table 1: Overview of articles in this special issue

Task
Type

Article

Study Description

Audience and Key findings

Authors’ Directions for Future Work

Type 1

Type 1,
Type 2,
Type 8

Type 2

Type 2

Type 3

Type 4

Type 5

Type 7

Assisting Software Star-
tups with LLMs: Effective
Prompt Engineering and
System Instruction Design

Still Just Personal Assis-
tants? — A Multiple Case
Study of Generative Al
Adoption in Software Or-
ganizations.

Generating Vulnerability
Security Fixes utilizing
Commit Hunks

Don’t Settle for the First!
How Many GitHub Copi-
lot Solutions Should You
Check?

Exploring the Use of LLMs
for the Selection Phase in
Systematic Literature Stud-
ies

Copiloting the Future:

How Generative Al
Transforms Software
Engineering

Trust, Transparency, and
Adoption: Social Media
Perspectives on Generative
Al for Software Engineer-

ing

Benchmarking Large Lan-
guage Models for Auto-
mated Labeling: The Case
of Issue Report Classifica-
tion

Design Science. Explore the
use of LLMs to support soft-
ware startups. Development of
prompt patterns for a set of spe-
cific use-cases; development of
StartupGPT, an LLM specifi-
cally tailored to startups.

Field Study. Multiple case
study at seven European orga-
nizations, focusing on the chal-
lenges they face when adopting
GenAl for SE; the benefits of
GenAl that are achieved, both
for the organizations as a whole
and individual users; and how
GenAl is used and changes SE.

Design Science. Proposal of a
code language model (CLM),
called ‘PatchLM,” which is fine-
tuned on code blocks linked
to Common Vulnerabilities and
Exposures (CVEs).

Sample Study. Analysis of
2,025 coding problems, and
17,048 solutions to those prob-
lems, generated by GitHub
Copilot. (While the generation
of solutions is a Type 2 task, the
selection of a solution would be
a Type 3 task.)

Laboratory Experiment. Ex-
plore the use of LLMs for the
selection phase of systematic lit-
erature reviews, evaluating five
LLMs on datasets from two
published SLRs, using preci-
sion and recall metrics.

Qualitative study using
Grounded Theory techniques,
drawing on 18 interviews
with professionals to explore
opportunities and barriers to
adoption.

Sample Study. Examines con-
versations on Twitter/X related
to GenAl coding tools / code
generation tools (CGT).

Laboratory Experiment. Bench-
mark study to evaluate BERT-
like and generative LLMs based
on a GitHub dataset.

Validated set of use-cases of LLMs
to assist startups. Effective prompt
patterns and system instructions
StartupGPT: an LLM-based startup
assistant, as a digital mentor.

The study identified 25 types of
tasks for which the case organiza-
tions use GenAl (these vary in type
as per the typology). The study iden-
tified 12 benefits of using GenAl in
SE, and 10 adoption and use chal-
lenges, including privacy and legisla-
tive concerns.

The proposed model PatchLM
significantly outperforms existing
CLMs in generating both accurate,
robust, and relevant fixes.

Solutions are not less likely to be
correct if they appear at later posi-
tions; checking four to five solutions
is generally sufficient; difficult and
novel problems are unlikely to be
solved by GitHub Pilot; the first so-
lution is less likely to be correct; the
time needed to check all solutions
may be cost-prohibitive.

LLMs improve recall but struggle
with precision; few-shot prompts
outperform zero-shot; GPT-4 is best
but costly. Human oversight remains
necessary.

GenAl enhances productivity and al-
leviates mental load, particularly in
early-stage tasks. However, adop-
tion is slowed by workflow misalign-
ment, trust issues, and prompting ef-
fort. The authors propose a concep-
tual framework for GenAl adoption
in SE.

Developers applaud CGTs for their
ability to improve processes and au-
tomation, but also express concerns
about ethics, misuse of OSS, and
risk of automating complex decision
making tasks.

LLMs demonstrate potential for
zero-shot classification, but perfor-
mance varies considerably across
datasets, and they require many com-
putational resources. BERT-like
models show more consistent perfor-
mance, requiring fewer resources.

Include fine-tuning of StartupGPT to train
it on relevant data. Further expansion of
the prompts to give further guidelines to
the LLM. Explore how to mitigate negative
feedback on prompts to ensure responses
are better tailored to startups.

Investigate the role of job experience on
the adoption and perceived usefulness of
GenAl Investigate the use of GenAl in
startups, and further study relevance and
impact of challenges and benefits identi-
fied in this study.

Integrating tools and human evaluations.
Develop bigger and more granular datasets
with multi-file changes, configuration up-
dates, and broader context information to
train better models. Security-focused fine-
tuning using vulnerability-specific datasets.
Study a more diverse set of pre-trained
CLMs.

Industry-based investigations are neces-
sary to evaluate the practical effort develop-
ers must invest in reviewing Al-generated
solutions.

Broaden evaluation to more prompts, mod-
els, and SLR datasets; explore other SLR
phases (e.g., full-text screening, summariz-
ing). Research hybrid workflows combin-
ing LLMs and a human second-reviewer.

Investigate GenAls’ effect on developer
productivity, cognitive load, and data secu-
rity, and whether over-reliance on GenAl
leads to a decline in critical thinking and a
degradation of coding skills over time.

Investigate how CGTs be integrated into
SE, considering concerns about bias, IP,
and legal compliance. Ethical frameworks
for Al code use; transparency in the code
generation process, impact of CGTs on
workflows and team dynamics.

Fine-tuning of generative LLMs and
prompt engineering; investigate how to im-
prove consistency of LLMs across datasets.
Explore hybrid approaches that leverage
generative and BERT-like models. Explore
how to reduce computational overhead of
Generative LLMs.

continued on next page

Table 1: Overview of articles in this special issue (continued)

Task
Type

Article

Study Description

Audience and Key findings

Authors’ Directions for Future Work

GPTs are not the Silver
Bullet: Performance and
Challenges of using GPTs
for Security Bug Report
Identification

Type 7

Type 7 Assessing Output Relia-
bility and Similarity of
Large Language Models in
Software Development: A
Comparative Case Study

Approach.

Type 7 Translating Code with
Large Language Models
and Human-in-the-loop

feedback

Leveraging Synthetic
Trace Generation of
Modeling Operations
for Intelligent Modeling
Assistants Using Large
Language Models

Type 8

Type 8 Using Large Language
Models for Multi-Level
Commit Message Genera-

tion for Large Diffs

Laboratory Experiment. Ex-
plore use of GPT models for
identification of security bugs,
comparing their performance to
traditional ML methods.

Laboratory Experiment. Evalu-
ation of reliability and similar-
ity of outputs generated by five
LLMs.

Laboratory Experiment. Pro-
posal of a methodology and
metrics for evaluating how Gen
Al tools can streamline code
translation.

Laboratory Experiment. Ex-
plore the interplay between tra-
ditional MDE and LLMs, and
evaluate the ability to train
an LLM for model completion
based on past operations.

Laboratory Experiment. Use of
LLMs to generate commit mes-
sages for ‘long’ diffs.

GPT models performed poorly to
identify security bug reports, with
significant variation in performance
in recall and accuracy. Use of differ-
ent prompts also led to considerable
differences in recall and accuracy.

The models demonstrate an overall
similarity of only 57%, emphasizing
that LLMs are not interchangeable
and that human oversight is neces-
sary.

LLMs with an intuitive interface
were preferred; ChatGPT generated
most reliable code; no clear winner
in terms of execution time. Copilot
showed how to manage code com-
plexity. Bard was the fastest, and
ChatGPt demonstrated highest pre-

cision.

Based on an evaluation in two mod-
eling environments with industry
use-cases, LLMs are demonstrated
to generate synthetic traces that are
comparable to those made by hu-
mans.

GPT-40 and LLaMA 3.1 70B per-
formed best in generating accu-
rate and relevant commit messages.
Commonly used metrics to evaluate
(BLEU, METEOR, ROUGE) may
not be the most reliable as they do
not agree with human evaluators.

Fine-tuning of prompts and improving
‘stickiness’ of prompt responses; prompt
engineering to eliminate positive bias; ad-
dress prompt token limit; fine-tuning avail-
able pre-trained models for security re-
ports; study factors that contribute to cor-
rect predictions; investigate automatic data
quality improvement; increase availability
of high-quality datasets.

Investigate the influence of model archi-
tectures and training approaches on perfor-
mance variations. Analysis of task-specific
performance patterns to explain variation
in reliability. Analyze how models han-
dle different application domains. Investi-
gate error patterns vis-a-vis architectural
and training choices. Investigate impact
of prompt engineering on model perfor-
mance.

Focus on integrated advanced optimization
techniques to produce relevant code to ad-
dress specific tasks. Develop clear guide-
lines and best practices for secure and ef-
fective use.

Consider additional modeling assistants
and LLMs that account for long-range tem-
poral dependencies.

More accurate evaluation approaches for
commit message generation are needed
that balance the benefits of automation
and human insight. More comprehensive
and robust assessments based on larger
datasets.

help streamline software development by assisting with planning,
coding, debugging, and routine tasks. It supported early-stage
design work by acting as a creative partner when exploring ideas
(Type 2 tasks) and helped developers understand unfamiliar
code. Participants reported that GenAl reduced development
time, eased cognitive load, and helped identify coding errors.
They perceived an increase in productivity and felt they had
more time for complex and strategic work.

However, the study also identified barriers to adoption, in-
cluding model limitations, data privacy concerns, misalignment
with established workflows, reliability concerns (such as hallu-
cinations and inconsistent outputs), and the effort required to
prompt and validate GenAl outputs. Additionally, the authors
mention a risk of over-reliance, which can lead to a decline in
critical thinking and a degradation of coding skills over time.

2.3. Quadrant IlI: Negotiate Tasks

McGrath positions ‘Negotiate’ tasks as an extension of ‘Choose’
tasks, but whereas the former seeks to ‘solve’ a solution in se-
lecting a specific choice, the latter seeks to ‘resolve’ [2]. In
negotiate tasks, actors who seek a joint solution may disagree
and in order to progress may need to compromise. The root
of the disagreement can be due to a conflict in viewpoints (or
philosophies) (Type 5), or a conflict of interests (Type 6). In
Type 5 tasks, parties share the same goal and purpose, and any
disagreements are due to cognitive conflicts. An example in eco-
nomics is Keynesian vs. Monetarian policies: both Keynesians
and Monetarists share the same goal of a thriving economy, but
their approaches towards that goal differ based at a cognitive (or
‘principled’) level.

The question of whether or not to adopt GenAl tools is
one that we would classify as a decision-making task (Type 4).
Clearly, there is no single correct answer, but the decision ulti-
mately relies on a number of factors. These factors may include

concerns, criticisms, expectations, and preferences. Manaal
Basha and Gema Rodriguez-Pérez focused exactly on this. They
studied Twitter discourse on the use of Generative Al for soft-
ware engineering in their article “Trust, Transparency, and
Adoption: Social Media Perspectives on Generative Al for
Software Engineering” [10]. In seeking to understand senti-
ments surrounding developers’ use of Code Generation Tools
(CGTys), they collected and analyzed data from approximately
90,000 tweets. Despite many users praising CGTs for streamlin-
ing development and automating routine tasks, the study found
that sentiments were often divided. Developers also expressed
concerns about ethical integrity, legal compliance, the risks of
automating complex decision-making, as well as bias in training
data — particularly in sensitive industries.

A second type of task in the Negotiate quadrant is called
mixed-motive tasks (Type 6). Whereas all previously discussed
task types (Types 1 to 5) assume that all actors “want the same
outcome for the group—the ‘correct’ answer” [2], Type 6 tasks
may have an outcome that is optimal for one or more actor, but
not for the others. A classic example of this is the Prisoners’
Dilemma. This type of tasks shifts the focus of cognitive con-
flict to a “struggle for pay-offs”; that is, the outcome will be
determined based on actors’ differing interests. For example, the
question of whether or not it should be legal to train LLMs on
copyrighted material has been a much-discussed question that
depends on a conflict of interests [11, 12].> Clearly, it is in the
interest of the creators of GenAl technology, such as OpenAl,
to use copyrighted material, and they do so under the premise
of ‘fair use’ [13]. Understandably, however, creators of original
materials (authors, songwriters, etc.) have a very different set of
interests.

None of the studies in this special issue describe tasks of
Type 6. Within SE, a good example of a Type 6 task, as it
relates to GenAl, is deciding on its use in education. At one
level, SE educators and students have the same goal, namely that
students successfully graduate (which would make it a Type 5
task). However, at a different level, the degree certificate is only a
proxy outcome; the real goal of educators is that students acquire
expertise in all aspects of SE, whereas some students (those who
do not shy away from cheating) may only focus on receiving
the degree; the “payoff’ for cheating (without being caught) is

“avoiding work, achieving higher grades and/or realizing less
stress” [14]. For that reason, whether or not to allow the use of
GenAl is a mixed-motive task that involves at least two different
parties with potentially differing goals (making it a Type 6 task).
Several papers have been published that discuss this and related
concerns [15, 16].

2.4. Quadrant IV: Execute Tasks

What McGrath calls ‘Execute’ (or ‘Perform’) tasks focus
on performing and implementation of plans [2]. This quadrant
differentiates so-called ‘contests’ or ‘battles’ (Type 7) from per-
formances that strive to meet a certain standard (Type 8). In
a contest, the task will lead to a ‘winner’ and a ‘loser.” In a

https://www.spinellis.gr/blog/20250626/

performance, on the other hand, the task is not a competition,
but an activity to “meet standards of excellence (or, sometimes,
standards of ’sufficiency’” [2, p.65]). The goal in performance
tasks is not to win, but to achieve a certain goal. Several of the
articles in the special issue describe tasks that fall within this
quadrant.

An example of a Type 7 task (a competition or contest) is
described by Dae-Kyoo Kim and Hua Ming, who examined
reliability and similarity of the outputs of several LLMs in their
article “Assessing Output Reliability and Similarity of Large
Language Models in Software Development: A Comparative
Case Study Approach” [17]. Following a structured approach,
Kim and Ming evaluated the reliability and similarity of outputs
from five prominent LLMs: ChatGPT, Claude, Copilot, Gemini,
and Meta. A key finding is that the models demonstrated an
overall similarity of only 57%, which emphasizes that these
models are not interchangeable and that human oversight is
necessary.

Differences in reliability suggest the need for calibrated
human oversight, especially in complex design decisions and
emerging technology domains. The authors propose a hybrid
approach.

Another example of a Type 7 task is explored in the arti-
cle “Benchmarking Large Language Models for Automated
Labeling: The Case of Issue Report Classification [18], by
Giuseppe Colavito, Filippo Lanubile, and Nicole Novielli. They
present a comprehensive benchmark study on LLMs for auto-
matic labeling and issue classification. The authors evaluated
22 generative LLMs and two BERT-like encoder models across
two GitHub datasets, one manually validated and the other using
crowd-sourced labels. Their results show that, while genera-
tive models perform competitively in zero-shot settings, they
often struggle with label consistency and output formatting. In
contrast, fine-tuned encoder-based models, especially SETFIT,
achieve more stable and accurate results with significantly lower
inference time and hardware requirements. The study highlights
that data quality and label clarity critically impact performance,
particularly for generative models. Despite the flexibility of
LLMs, practical deployment is challenged by high computa-
tional cost and the need for response post-processing. As such,
the authors argue that BERT-style models remain preferable in
many real-world scenarios, especially when modest labeling
effort is acceptable. However, development within this field is
not done, and to support future research, they have shared a fine-
tuned sentence-transformer model and a complete replication
package for their study.

A third example of a Type 7 task is presented in a study by
Gabriele Dario De Siano, Anna Rita Fasolino, Giancarlo Sperli,
and Andrea Vignali, who developed a methodology and met-
rics for evaluating how Generative Al tools can streamline code
translation in their article “Translating Code with Large Lan-
guage Models and Human-in-the-loop feedback” [19]. Where
previous studies have focused on evaluating translation quality,
the authors here centralizes the human-Al interaction to investi-
gate how individuals use ChatGPT, Google Bard, and GitHub
Copilot to translate from code written in query languages to
code written in framework-specific code languages, specifically

https://www.spinellis.gr/blog/20250626/

focused on SQL dialects and PySpark. Their study highlights
how iterative tool interaction, human refinement, and context-
aware adaptation contribute to both efficiency and code quality,
offering practical insights for integrating Al into development
workflows.

Another example of a Type 7 task is classifying security bug
reports. In “GPTs are not the Silver Bullet: Performance and
Challenges of using GPTs for Security Bug Report Identifi-
cation” [20], Hor4cio Franca, Katerina Goseva-Popstojanova,
César Teixeira, and Nuno Laranjeiro present an empirical eval-
uation of four state-of-the-art, off-the-shelf GPT models for
classifying security bug reports. Drawing on seven datasets from
open-source projects, they explore how model selection, prompt
formulation, and dataset characteristics impact classification per-
formance. The authors compare GPT-based approaches (using
zero-shot learning and three different prompts) against classical
machine learning models like Support Vector Machine, Random
Forest, and Logistic Regression.

Contrary to the expectations surrounding GPTs’ versatil-
ity, the study finds that GPT models consistently underperform
traditional ML classifiers in terms of precision, F-score, and
accuracy. While GPTs achieve high recall in some cases, this is
often at the expense of precision, resulting in many false posi-
tives. Moreover, results vary substantially across datasets and
prompts, highlighting prompt sensitivity and the influence of
data quality and class imbalance.

The authors identify several challenges, including token lim-
its, prompt bias, and the lack of fine-tuning, as critical barriers to
effective GPT use in security bug report identification. They con-
clude that current GPT models are not yet viable replacements
for classic methods and offer detailed recommendations to guide
future research toward possibly overcoming these limitations.

One example of a performance task (Type 8) is the work
of Vittoriano Muttillo, Claudio di Sipio, Riccardo Rubei, and
Luca Berardinelli, who explored the interplay between tradi-
tional model-driven engineering (MDE) and LLMs. In their
article “Leveraging Synthetic Trace Generation of Modeling
Operations for Intelligent Modeling Assistants Using Large
Language Models” [21], they propose a conceptual model that
comprises a modeling environment in which modeling opera-
tions are recorded. Model completion is achieved by a modeling
assistant that is trained on those past operations. The feasibility
of this approach in practice is evaluated in two modeling envi-
ronments, with use cases from industry. The results show that
the LLMs used in this study are able to generate synthetic traces
that are comparable to human ones.

Another example of a Task Type 8 is the generation of com-
mit messages, which are subsequently evaluated to a certain
standard. This is addressed in the article “Using Large Lan-
guage Models for Multi-Level Commit Message Generation
for Large Diffs” by Abhishek Kumar, Sandhya Sankar, Partha
Pratim Das and Partha Pratim Chakrabarti [22]. Using several
different LLMs, they investigate how effective these LLMs are
in generating commit messages, in particular with ‘larger’ diffs,
given that much work on automated commit message generation
has focused on diffs of only up to 200 tokens. Kumar et al.
found that LLaMA 3.1 70B emerged as the best model based on

common evaluation metrics (BLEU, METEOR, ROUGE-L, and
CIDEr metrics). Their study also finds that some LLMs generate
more accurate and relevant messages than traditional baselines,
offering evidence that LLLMs may be very effective to support
software engineering tasks. Finally, they also find that human
evaluation is a more reliable approach than a metric-based one
(using ROUGE and METEOR, for example), which are less
likely to capture the nuanced quality of commit messages.

Table 1 presents a summary of the 13 articles in this special
issue, capturing the Task Type [2], research strategy [23], target
audience and key findings, and a summary of directions for
future work as proposed by the authors.

3. Future Outlook

The 13 papers in this special issue demonstrate a wide vari-
ety of studies of GenAl in SE, ranging from comparative studies
with “traditional” ML techniques, explorations of the perfor-
mance of GenAl technologies, to qualitative studies investigat-
ing opinions and perceptions of software professionals. Across
these articles, we can observe a number of recurring themes that
can be tied to the Task Circumplex (Figure 1), which we believe
merit further investigation.

* Human-AI collaboration: How will GenAlI reshape the
role of the human knowledge worker, and the organiza-
tion as a whole? One example is Al assistants in agile
software development [24]. The Copenhagen Manifesto
has argued that “Generative Al in Software Engineering
Must Be Human-Centered” [25], a sentiment also found
in other communities [26] (e.g., collaborative tasks, in-
cluding Generate tasks: Type 1 and 2).

» To what extent can we trust the correctness of solutions,
decisions, and advice provided by GenAl technology in
making decisions and selecting alternatives, or the code
solutions generated by GenAl (e.g., Type 3, and 4)?

* How do we address issues related to trust, ethics, privacy,
and legislation? What if Al-generated outputs “disagree”
with human norms, judgment, or legislation? Where do
we draw the line of trust in GenAlI? (e.g., Negotiate tasks:
Type 5 and 6)?

» Studying a variety of quality attributes of GenAl technol-
ogy: what is the performance, quality, and reliability of
Al-generated vs. human-generated outputs? For which
tasks does GenAl perform better than a human knowledge
worker (Execute task: Type 7) or than a certain standard
of excellence (Execute task: Type 8)?

Much research of GenAl technology in SE revolves around
the question: How well can GenAl (usually: LLM or CLM)
perform task X? This type of question is very useful, and the
impact of such research studies can be readily applied. However,
we observe two major challenges. First, such studies will be
quickly outdated with the release of newer versions of GenAl
technology. The next version of a given LLM may perform

dramatically better — or worse — invalidating the results of
such studies quickly. This makes much of this research short-
lived.

Second, we observe a dramatic growth in publications that
focus on applying GenAl in SE activities, and the result is an
enormous number of empirical findings. Unfortunately, very
little of this work is driven by or focused on generating theory.
There are a few exceptions, such as Russo’s recent work on
the adoption of GenAl in software engineering [27]. Future
empirical SE studies could benefit from a more theory-centric
approach [28, 29], and from keeping the goals of evidence-based
software engineering [30] in mind to serve the software industry.
These are [31]:

* Develop a deep understanding: enrich our understanding
of techniques, practices of GenAl technology in SE;

* Lead to insights that are practical and meaningful: identify
outcome measures that are practical and meaningful to
practitioners;

* Support assessment and evaluation: conduct studies that
generate convincing evidence to help determine whether
techniques, practices, and approaches actually work in
practice;

* Support decision making: conduct studies that help soft-
ware professionals and organizations to make better deci-
sions.

This special issue is part of the “conversation” that we,
as a scholarly community, have. This conversation has many
participants—even the most Al-skeptical researchers within the
community cannot deny or ignore the huge influence that GenAl
technology has on SE research and practice. For this conver-
sation to be productive, we must carefully “listen” to different
perspectives and provide structure—McGrath’s task circumplex
is one attempt to find a theoretical structure among latent patterns
of research of GenAl in SE. Other useful theoretical frameworks
exist; one particularly useful framework that has been used to by
Storey et al. is McLuhan’s Tetrad [32]. This framework helps
to ask “interesting” questions; for example: how does GenAl
technology enhance SE practice? How does it make practices
and technologies obsolete? How does it reverse common prac-
tice, and what past practices might it retrieve? Similarly, we can
identify “interesting” questions by challenging and problema-
tizing assumptions that of current literature, rather than simply
“spotting gaps,” i.e., identifying research questions that have
remained unanswered — some things are simply not interesting
[33, 34].

Apart from an increasing number of primary studies that
investigate GenAl technology in SE, we can also observe many
review and “roadmap” papers. Such papers help address the
problem of not being able to see the forest for the trees. At the
same time, it is imperative that, as a field, we remain thoughtful,
considerate, and critical in proposing future research questions,
aiming for contributions that endure beyond the next publica-
tion. The SE research community has the capacity to generate

knowledge that truly shapes both our knowledge, understanding
and practice.

This special issue marks only the beginning of the conversa-
tion around GenAl in SE. Information and Software Technology
as one of the leading journals will feature other special issues
on GenAl: upcoming special issues are focused on “Engineer-
ing GenAl-enabled Software Systems,” edited by He (Jason)
Zhang, Shang Gao, and Xiaofeng Wang, and “Next-Generation
Model-Based Software Engineering with Foundation Models,”
edited by Claudio Di Sipio, Silvia Abrahao, Fabio Palomba, and
Martin Weyssow. Let the conversation continue!

Acknowledgements

We express our sincere gratitude to the committed reviewers
who devoted their time and valuable input to this special issue.
We are grateful to Special Content Editor Dr Jeff Carver, who
provided prompt and frequent assistance as needed. Finally, we
are grateful to the authors who entrusted us with their research
and responded carefully to all reviewer feedback. This research
was supported by the Research Council of Norway through
grants 321477 and 355691.

References

[1]1 Q. Zhang, C. Gao, D. Chen, Y. Huang, Y. Huang, Z. Sun, S. Zhang, W. Li,
Z. Fu, Y. Wan, L. Sun, LLM-as-a-coauthor: Can mixed human-written and
machine-generated text be detected?, in: K. Duh, H. Gomez, S. Bethard
(Eds.), Findings of the Association for Computational Linguistics: NAACL
2024, Association for Computational Linguistics, Mexico City, Mexico,
2024, pp. 409-436. doi:10.18653/v1/2024.findings-naacl.
29.

[2] J. E. McGrath, Groups: Interaction and performance, Prentice Hall, 1984.

[3] T. L. Ahlgren, H. F. Sunde, K.-K. Kemell, A. Nguyen-Duc, Assisting
early-stage software startups with llms: Effective prompt engineering
and system instruction design, Information and Software Technology 187
(2025) 107832. doi:10.1016/3j.infsof.2025.107832.

[4] K.-K. Kemell, M. Saarikallio, A. Nguyen-Duc, P. Abrahamsson, Still just
personal assistants?—a multiple case study of generative ai adoption in
software organizations, Information and Software Technology 186 (2025)
107805. doi:10.1016/3j.infsof.2025.107805.

[5] G. Bhandari, N. Gavric, A. Shalaginov, Generating vulnerability security
fixes with code language models, Information and Software Technology
185 (2025) 107786. doi:10.1016/j.infsof.2025.107786.

[6] C.Le Goues, M. Pradel, A. Roychoudhury, Automated program repair,
Communications of the ACM 62 (12) (2019) 56-65. doi:10.1145/
3318162.

[7] 1. Oertel, J. Kliinder, R. Hebig, Don’t settle for the first! how many github
copilot solutions should you check?, Information and Software Technology
183 (2025) 107737. doi:10.1016/7.infsof.2025.107737.

[8] L. Thode, U. Iftikhar, D. Mendez, Exploring the use of 1lms for the se-
lection phase in systematic literature studies, Information and Software
Technology 184 (2025) 107757. doi:10.1016/7j.infsof.2025.
107757.

[9] L. Banh, F. Holldack, G. Strobel, Copiloting the future: How generative ai
transforms software engineering, Information and Software Technology
183 (2025) 107751. doi:10.1016/7.infsof.2025.107751.

[10] M. Basha, G. Rodriguez-Pérez, Trust, transparency, and adoption in gen-
erative ai for software engineering: insights from twitter discourse, Infor-
mation and Software Technology 186 (2025) 107804. doi:10.1016/
j.infsof.2025.107804.

[11] N. Rahman, E. Santacana, Beyond fair use: Legal risk evaluation for
training LLMs on copyrighted text, in: Proceedings of the 1st Work-
shop on Generative Al and Law (GenLaw ’23), colocated with the 40th

https://doi.org/10.18653/v1/2024.findings-naacl.29
https://doi.org/10.18653/v1/2024.findings-naacl.29
https://doi.org/10.1016/j.infsof.2025.107832
https://doi.org/10.1016/j.infsof.2025.107805
https://doi.org/10.1016/j.infsof.2025.107786
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1016/j.infsof.2025.107737
https://doi.org/10.1016/j.infsof.2025.107757
https://doi.org/10.1016/j.infsof.2025.107757
https://doi.org/10.1016/j.infsof.2025.107751
https://doi.org/10.1016/j.infsof.2025.107804
https://doi.org/10.1016/j.infsof.2025.107804

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

(22]

(23]

International Conference on Machine Learning (ICML), 2023, https:
//blog.genlaw.org/2023-workshop.html.

S. C. Lightstone, Train or restrain? using international perspectives to
inform the american fair use analysis of copyright in generative artificial in-
telligence training, Northwestern Journal of International Law & Business
44 (3) (2024) 471.

P. Samuelson, Generative Al meets copyright, Science 381 (6654) (2023)
158-161. doi:10.1126/science.adi0656.

P. A. Hutton, Understanding student cheating and what educators can
do about it, College Teaching 54 (1) (2006) 171-176. doi:10.3200/
CTCH.54.1.171-176.

V. D. Kirova, C. S. Ku, J. R. Laracy, T. J. Marlowe, Software engineering
education must adapt and evolve for an LLM environment, in: Proceedings
of the 55th ACM Technical Symposium on Computer Science Education
V. 1, 2024, pp. 666-672. doi1:10.1145/3626252.3630927.

I. Joshi, R. Budhiraja, P. D. Tanna, L. Jain, M. Deshpande, A. Srivastava,
S. Rallapalli, H. D. Akolekar, J. S. Challa, D. Kumar, "with great power
comes great responsibility!”: Student and instructor perspectives on the
influence of LLMs on undergraduate engineering education, arXiv preprint
arXiv:2309.10694 (2023).

D.-K. Kim, H. Ming, Assessing output reliability and similarity of large
language models in software development: A comparative case study
approach, Information and Software Technology 185 (2025) 107787. doi :
10.1016/3j.infsof.2025.107787.

G. Colavito, F. Lanubile, N. Novielli, Benchmarking large language
models for automated labeling: The case of issue report classifica-
tion, Information and Software Technology 184 (2025) 107758. doi:
10.1016/3.infsof.2025.107758.

G. D. De Siano, A. R. Fasolino, G. Sperli, A. Vignali, Translating code with
large language models and human-in-the-loop feedback, Information and

Software Technology 186 (2025) 107785. doi:10.1016/j.infsof.

2025.107785.

H. L. Franca, K. Goseva-Popstojanova, C. Teixeira, N. Laranjeiro, Gpts
are not the silver bullet: Performance and challenges of using gpts for
security bug report identification, Information and Software Technology
185 (2025) 107778. doi1:10.1016/j.infsof.2025.107778.

V. Muttillo, C. Di Sipio, R. Rubei, L. Berardinelli, Leveraging synthetic
trace generation of modeling operations for intelligent modeling assistants
using large language models, Information and Software Technology 186
(2025) 107806. doi:10.1016/7j.infsof.2025.107806.

A. Kumar, S. Sankar, P. P. Das, P. P. Chakrabarti, Using large language
models for multi-level commit message generation for large diffs, Infor-
mation and Software Technology 187 (2025) 107831. doi:10.1016/
j.infsof.2025.107831.

K.-J. Stol, B. Fitzgerald, The ABC of software engineering research, ACM
Transactions on Software Engineering and Methodology 27 (3) (2018) 11.
doi:10.1145/3241743.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

B. Cabrero-Daniel, T. Herda, V. Pichler, M. Eder, Exploring human-
ai collaboration in agile: Customised 1lm meeting assistants, in:
International Conference on Agile Software Development, Springer
Nature Switzerland Cham, 2024, pp. 163-178. doi:10.1007/
978-3-031-61154-411.

D. Russo, S. Baltes, N. van Berkel, P. Avgeriou, F. Calefato, B. Cabrero-
Daniel, G. Catolino, J. Cito, N. Ernst, T. Fritz, H. Hata, R. Holmes,
M. Izadi, F. Khomh, M. B. Kjargaard, G. Liebel, A. L. Lafuente,
S. Lambiase, W. Maalej, G. Murphy, N. B. Moe, G. O’Brien, E. Paja,
M. Pezze, J. S. Persson, R. Prikladnicki, P. Ralph, M. Robillard, T. R.
Silva, K.-J. Stol, M.-A. Storey, V. Stray, P. Tell, C. Treude, B. Vasilescu,
Generative Al in software engineering must be human-centered: The
Copenhagen Manifesto, Journal of Systems and Software (2024). doi :
10.1016/73.3ss.2024.112115.

D. Wang, E. Churchill, P. Maes, X. Fan, B. Shneiderman, Y. Shi, Q. Wang,
From human-human collaboration to human-AlI collaboration: Designing
Al systems that can work together with people, in: Extended abstracts of
the 2020 CHI conference on human factors in computing systems, 2020,
pp. 1-6. doi:10.1145/3334480.3381069.

D. Russo, Navigating the complexity of generative Al adoption in software
engineering, ACM Transactions on Software Engineering and Methodol-
ogy 33 (5) (2024) 1-50. do1:10.1145/3652154.

V. Stray, R. Hoda, M. Paasivaara, V. Lenarduzzi, D. Mendez, Theories in

agile software development: Past, present, and future, Information and
Software Technology 152 (2022) 107058. doi:10.1016/7j.infsof.

2022.107058.

K.-J. Stol, M. Goedicke, I. Jacobson, Introduction to the special sec-
tion—general theories of software engineering: New advances and im-
plications for research, Information and Software Technology 70 (2016)
176-180. doi:10.1016/3j.infso0f.2015.07.010.

B. A. Kitchenham, T. Dyba, M. Jorgensen, Evidence-based software engi-
neering, in: Proceedings of the 26th International Conference on Software
Engineering, IEEE, 2004, pp. 273-281. doi:10.1109/ICSE.2004.
1317449.

S. Beecham, D. Bowes, K.-J. Stol, Introduction to the ease 2016 special
section: Evidence-based software engineering: Past, present, and future,
Information and Software Technology 89 (2017) 14-18. doi:10.1016/
j.infsof.2017.05.002.

M.-A. Storey, D. Russo, N. Novielli, T. Kobayashi, D. Wang, A disruptive
research playbook for studying disruptive innovations, ACM Transactions
on Software Engineering and Methodology 33 (8) (2024) 1-29. doi:
10.1145/3678172.

K. H. Rolland, B. Fitzgerald, T. Dingsgyr, K.-J. Stol, Acrobats and safety
nets: problematizing large-scale agile software development, ACM Trans-
actions on Software Engineering and Methodology 33 (2) (2023) 1-45.
doi:10.1145/36171609.

M. Alvesson, J. Sandberg, Constructing research questions: Doing inter-
esting research, 2nd Edition, SAGE Publications Ltd, 2024.

https://blog.genlaw.org/2023-workshop.html
https://blog.genlaw.org/2023-workshop.html
https://doi.org/10.1126/science.adi0656
https://doi.org/10.3200/CTCH.54.1.171-176
https://doi.org/10.3200/CTCH.54.1.171-176
https://doi.org/10.1145/3626252.3630927
https://doi.org/10.1016/j.infsof.2025.107787
https://doi.org/10.1016/j.infsof.2025.107787
https://doi.org/10.1016/j.infsof.2025.107758
https://doi.org/10.1016/j.infsof.2025.107758
https://doi.org/10.1016/j.infsof.2025.107785
https://doi.org/10.1016/j.infsof.2025.107785
https://doi.org/10.1016/j.infsof.2025.107778
https://doi.org/10.1016/j.infsof.2025.107806
https://doi.org/10.1016/j.infsof.2025.107831
https://doi.org/10.1016/j.infsof.2025.107831
https://doi.org/10.1145/3241743
https://doi.org/10.1007/978-3-031-61154-4 11
https://doi.org/10.1007/978-3-031-61154-4 11
https://doi.org/10.1016/j.jss.2024.112115
https://doi.org/10.1016/j.jss.2024.112115
https://doi.org/10.1145/3334480.3381069
https://doi.org/10.1145/3652154
https://doi.org/10.1016/j.infsof.2022.107058
https://doi.org/10.1016/j.infsof.2022.107058
https://doi.org/10.1016/j.infsof.2015.07.010
https://doi.org/10.1109/ICSE.2004.1317449
https://doi.org/10.1109/ICSE.2004.1317449
https://doi.org/10.1016/j.infsof.2017.05.002
https://doi.org/10.1016/j.infsof.2017.05.002
https://doi.org/10.1145/3678172
https://doi.org/10.1145/3678172
https://doi.org/10.1145/3617169

	1 Introduction
	2 What is Generative AI Good For? An Overview of the Articles in this Special Issue
	2.1 Quadrant I: Generate Tasks
	2.2 Quadrant II: Choose Tasks
	2.3 Quadrant III: Negotiate Tasks
	2.4 Quadrant IV: Execute Tasks

	3 Future Outlook

