
Scaling Agile Methods to Regulated Environments:

An Industry Case Study

Brian Fitzgerald∗, Klaas-Jan Stol∗, Ryan O’Sullivan†, and Donal O’Brien†

∗Lero—The Irish Software Engineering Research Centre, University of Limerick, Ireland
†QUMAS, Cleve Business Park, Monahan Road, Cork, Ireland

bf@ul.ie, klaas-jan.stol@lero.ie, rosullivan@qumas.com, dobrien@qumas.com

Abstract—Agile development methods are growing in popu-
larity with a recent survey reporting that more than 80% of
organizations now following an agile approach. Agile methods
were seen initially as best suited to small, co-located teams
developing non-critical systems. The first two constraining char-
acteristics (small and co-located teams) have been addressed
as research has emerged describing successful agile adoption
involving large teams and distributed contexts. However, the
applicability of agile methods for developing safety-critical sys-
tems in regulated environments has not yet been demonstrated
unequivocally, and very little rigorous research exists in this area.
Some of the essential characteristics of agile approaches appear
to be incompatible with the constraints imposed by regulated
environments. In this study we identify these tension points and
illustrate through a detailed case study how an agile approach
was implemented successfully in a regulated environment. Among
the interesting concepts to emerge from the research are the
notions of continuous compliance and living traceability.

Index Terms—Agile methods, regulated environments, Scrum,
case study.

I. INTRODUCTION

The widespread penetration of agile methods is readily

evidenced in a large-scale industry survey which reported

that 80% of respondent organizations were following an agile

approach [1]. Agile methods were initially viewed as best

suited to (a) small projects with (b) co-located teams and (c)

non-critical projects [2][3]. The first two of these constraints

(small projects and co-located teams) have been addressed:

several research studies have been published of agile adoption

by large teams (e.g., [4][5][6]) and in distributed environments

(e.g., [7][8][9]). However, the final constraining characteristic,

that of agile adoption in regulated environments, has yet to

be addressed. In this area, there is very little rigorous evi-

dence of successful application of agile approaches—typically

short experience reports in workshops or practitioner reports

(see [10] for a review). A lack of such evidence inhibits

the adoption of agile methods in regulated environments. A

number of key agile advocates have argued that agile software

development methods are best suited to non-critical systems.

For instance, Boehm [11] cited Scott Ambler [12] (originator

of agile modeling) in stating that,“I would be leery of applying

agile modeling to life-critical systems.”

Regulated environments, such as automotive, aviation, fi-

nancial services, food, medical devices, nuclear, pharmaceu-

tical and railway, pose particular challenges for software

development as software has not been traditionally viewed as

core in these sectors. Recent changes in the medical device

sector, for instance, illustrate clearly the need for scaling of

software to regulated environments, and the challenges which

this presents. Traditionally, medical devices comprised primar-

ily hardware with perhaps some embedded software. Since

2010, an amendment to the EU Medical Device Directive now

classifies stand-alone software applications as active medical

devices [13]. This has major implications in that software

which was traditionally seen as secondary and a means to an

end in the sector, has now moved center-stage.

Agile methods and regulated environments are often seen

as fundamentally incompatible [14]. The reason for this can

be traced to the Agile Manifesto [15] which identifies four

fundamental value propositions for agile as:

1. Individuals and interactions over Processes and tools.

2. Working software over Comprehensive documentation.

3. Customer collaboration over Contract negotiation.

4. Responding to change over Following a plan.

While the agile advocates acknowledged the statements on

the right as having value, they valued the statements on the

left more. However, in regulated environments the statements

on the right represent values which are of particular impor-

tance. Thus, an initial assessment might conclude that agile

approaches and regulated environments are incommensurable.

Agile software development methods are faced with some

fundamental challenges in regulated environments. Agile pro-

cesses follow an empirical logic in a plan-do-check-act

(PDCA) cycle [3], whereby some development is planned and

done, the results are inspected, and adaptations are made to

improve the process to solve any problems that have arisen.

However, in regulated environments, a defined logic rather

than empirical logic is more desirable. Development processes

in regulated environments are typically audited by external

assessors. Thus, the granularity at which development pro-

cesses are expressed and adapted requires careful tailoring in

a regulated environment. Furthermore, regulated environments

require rigorous traceability. In the case of requirements, for

example, these need to be traced from initial requirement

through to final implementation in the code-base.

This study presents an in-depth account of agile method

implementation in a regulated environment at QUMAS, a

leading supplier of regulatory compliance management so-

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
Software Engineering in Practice

863

lutions for document and quality management, submissions

management, and regulatory approval in the life sciences

sector. The paper is laid out as follows. In the next section,

the essential principles of the agile approach are presented,

specifically as they relate to Scrum, by far the most commonly

used agile method [1], and the basis of the agile method in use

in QUMAS. Following this, we discuss the specific challenges

that regulated environments pose for software development.

We then discuss the case study research method adopted for

the study, and provide details on QUMAS, the case company.

Details of the implementation of the agile method and how it

was configured to address the constraints posed by operating

in a regulated environment are then presented. Finally, the

implications of the study are discussed.

II. AGILE METHODS

The formation of the Agile Alliance in 2001 and the

publication of the Agile Manifesto formally introduced agility

to the field of software development. Those involved sought

to “restore credibility to the word method” within the context

of software development [16]. The manifesto conveyed an

industry-led vision for a profound shift in the conventional

software development paradigm.

Many different methods have been labeled as agile, such

as eXtreme Programming (XP) [17], Scrum [18], Crystal [19],

Dynamic Systems Development Method (DSDM) [20], Agile

Modeling [21], Feature Driven Design [22], Lean software

development [23], and perhaps even the Rational Unified

Process (RUP) [24]. Notwithstanding the breadth of agile

methods available, they are underpinned by the 12 fundamental

principles of the Agile Manifesto [15].

One of the most popular and widely adopted agile methods

is Scrum, which is also the subject of this paper. The Scrum

metaphor has its origins in Takeuchi and Nonaka [25] who

used it to describe an innovative approach to new product

development, borrowing the rugby practice of a group of

players combining to move the ball forward. The method was

developed jointly by Sutherland and Schwaber [26] and has

evolved to incorporate additional practices over the years [27].

The Scrum framework is reproduced in Fig. 1. As can be

seen in the figure, the lifecycle of a Scrum project is largely

comprised of iterations of development “sprints” with an initial

planning phase and a final closure phase of sprint review and

retrospective. Planning enables both architectural and scope

concerns to be addressed and the closure phase incorporates

release management. The initial and final phases are suggested

to be predictable and may be defined.

The empirical nature of Scrum is evident in the on-going

iterations or sprints that adapt to feedback and change through-

out the project. A notable aspect of this approach is the

inclusion of groups that were considered to be obstacles to

traditional development projects (e.g. sales and marketing).

The method embraces change by enabling the development

team to both react and promote changes as the system evolves

[29].

3 Weeks

Sprint

backlog
Product
Backlog

Shippable
product

Daily

standup

meeting

The Team

Product

Owner

Scrum Master

Sprint
Planning
Meeting

Sprint review

1 day

Sprint retrospective

Input from customers,

team, managers, execs

Fig. 1. Scrum Framework (adapted from Deemer and Benefield [28]).

III. REGULATED ENVIRONMENTS

Regulated domains exhibit varying levels of criticality, from

safety-critical to security-critical [30]. A core characteristic

of regulated environments is the necessity to comply with

formal standards, regulations, directives and guidance. There

is a plethora of regulations and standards which apply across

different regulated domains. These are issued by a number of

bodies or associations (e.g., ISO, FDA, PDA, GAMP, IEC,

ISPE, RTCA). Also, some are region-specific (e.g. US or

EU). (The specific regulations and standards that apply in the

QUMAS case are summarised in Fig. 3 below).

Software plays an increasingly important role in regulated

environments. The principles of the agile manifesto were

identified earlier, and although an overarching set of principles

for regulated environments does not exist, a number of core

issues for software development in regulated environments

may be inferred. These issues include quality assurance, safety

and security, effectiveness, traceability, and verification and

validation. They are summarized in Fig. 2, and are elaborated

on below where a discussion of how they may conflict with

agile methods is presented.

A. Quality Assurance

The IEEE [31] define Quality Assurance as: “a planned and

systematic pattern of all actions necessary to provide adequate

Quality Assurance:

• Systematic and inherent quality management underpinning a controlled
professional process

• Reliability and correctness of product

Safety and Security:

• Formal planning and risk management to mitigate safety risks for users
• Securely protect users from unintentional and malicious misuse

Effectiveness:

• Satisfying user needs, and delivering high value to users with high
usability

Traceability:

• Documentation providing auditable evidence of regulatory compliance
and facilitating traceability and investigation of problems

Verification and Validation:

• Embedded throughout the software development process (user require-
ments specification, functional specification, design specification, code
review, unit tests, integration tests, requirements tests)

Fig. 2. Key concepts in regulated environments.

864

confidence that the item or product conforms to established

technical requirements.”

Pfleeger et al. performed an analysis of software standards

and found that they are heavily focused on processes (rather

than products) [32]. They characterized software standards

as prescribing “the recipe, the utensils, and the cooking

techniques, and then assume that the pudding will taste good.”

This corresponds with Deming [33] who argued that, “The

quality of a product is directly related to the quality of the

process used to create it.”

Agile principles are inspired by concepts from complex

adaptive systems (CAS), such as edge of chaos and emergence

[34]. Software development is a complex activity. Thus, a

defined or theoretical approach is not feasible since one cannot

define in advance the necessary steps to fully accomplish

the development task from initial requirements through to

eventual implementation. This is the key failing of the phased

development approach inherent in the traditional Waterfall

lifecycle [35]. In such situations, a more experimental or

empirical logic is appropriate. This is the PDCA logic whereby

some activity is performed, the results are inspected, and the

process is adapted to resolve any problems that have arisen.

The CAS concept of ‘edge of chaos’ is drawn on to inspire the

notion of self-managing teams that can experiment and adapt,

while still retaining enough structure so as not to fall into

disarray. Likewise, emergence of new scenarios is embraced

as an opportunity to learn from adaptation. However, these

agile principles are fundamentally at odds with the desire for

a defined and repeatable process that regulated environments

stipulate. While agile methods stress early involvement of test

groups and rapid feedback, they pay little attention typically

to the relationship between development and quality assurance

groups [3].

B. Safety and Security

Regulated environments place a strong emphasis on safety

and security. Though safety and security focus on different

aspects, they are both related to risk management. One of the

most-cited software failures is the Therac-25 radiation machine

resulting in a number of fatal treatments [36]. Though these

accidents cannot be attributed solely to software, it is clear

that it did play an important role in those cases.

Safety and security are system-level characteristics, and as

such must be built-in from the start and not considered after

the fact. As Mead wrote, a “focus on features tends to result in

buggy, insecure software” [37]. Yet, agile methods suggest an

iterative approach, which is often mentioned as a problem with

respect to architectural quality attributes [38], of which safety

and security are two examples. Tribble argued that showing

process compliance is not sufficient for building safety-critical

systems but that demonstrating achievement of a product’s

safety requirements is also required [39].

C. Effectiveness

An important factor in regulated environments is effective-

ness as it relates to development speed and cost; the additional

cost of strictly following predefined processes may be at

odds with agile methods, which are claimed to be lightweight

and flexible. The primary emphasis in software development

in regulated domains is to obtain regulatory approval rather

than to improve software processes per se. Thus, software

development in regulated environments differs from software

development in non-critical domains in several significant

ways. Characteristics such as safety, effectiveness and trace-

ability are deemed more important than time-to-market and

profitability. This leads to longer product lifecycles, often up

to ten years, a timespan unheard of in an agile context. In fact,

one of the promises of agile methods is an increased time-to-

market. DeMarco [40] argued that “agile methods provide a

tradeoff between speed and risk.”

D. Traceability

A key concern in regulated environments is traceability,

which helps to establish compliance to standards and regula-

tions. The IEEE define traceability as: “The degree to which a

relationship can be established between two or more products

of the development process, especially products having a

predecessor-successor or master-subordinate relationship to

one another; for example, the degree to which the requirements

and design of a given software component match” [31].

Agile projects typically have few traceable artifacts [41].

Also, in regulated environments the emphasis is on the soft-

ware development processes rather than the software product.

Other agile principles, such as prioritizing working software

over documentation, inhibit traceability as documentation is

the primary evidence of traceability, and needs to be explicitly

addressed in regulated environments.

Cleland-Huang explored some of the issues, challenges and

goals of traceability in agile projects, and proposed a number

of specific solutions to traceability in such projects [41]. As

Cleland-Huang argued in the case of safety-critical projects,

an organization may be fined, or its products forcibly recalled,

when the compulsory traceability and other requirements are

not respected.

E. Verification and Validation

Verification and Validation (V&V) are two distinctly differ-

ent concepts, but often conflated. V&V is defined as: “The

process of determining whether the requirements for a system

or component are complete and correct, the products of

each development phase fulfill the requirements or conditions

imposed by the previous phase, and the final system or com-

ponent complies with specified requirements” [31]. Whereas

verification helps to answer the question Are we building

the product right?, validation refers to the question, Are we

building the right product? [42].

Another agile principle, that of frequent delivery of working

software, can also cause problems in a regulated environment,

where this would imply more frequent formal review and

approval cycles for this software. The latter represents a major

undertaking for several functions throughout the organization

such as the Quality Assurance (QA) function, for example, and

865

as such would require significant organizational change, which

is never easy to accomplish. As Rakitin [42, p. 47] points

out, there is a cost associated with performing verification and

validation tasks in software development.

IV. PREVIOUS WORK

As pointed out above, whereas the adoption of agile in

distributed settings and the use of agile methods in large

teams has received considerable attention, very little research

has addressed agile in regulated environments. Cawley et

al. [10] conducted a systematic review of agile in regulated

environments, and identified 21 relevant works, of which 14

were peer-reviewed papers. Of the 14, only four were empirical

studies (as opposed to experience reports and expert opinion),

two of which focused on embedded software rather than

regulated environments. The remaining two papers present a

method for process assessment in the automotive domain [43],

and an examination of the applicability of agile practices in

the aerospace domain [44]. This clearly indicates a lack of

attention for this topic while aspects such as traceability are of

increasing importance. This is further evidenced by a recently

published book on software and systems traceability [45].

Gary et al. reported on a safety-critical open source project

that is using agile methods [46]. Our paper differs from that

work in two aspects. Firstly, Gary et al. reported on their

own experiences, whereas our paper presents an in-depth case

study approach. Secondly, while Gary et al. reported on agile

methods in an open source setting, this paper reports on agile

methods in an industry setting. As such, our findings are

directly relevant to other organizations that wish to adopt agile

methods in regulated environments.

V. RESEARCH APPROACH

A. Background to the Case: QUMAS

QUMAS is headquartered in Cork, Ireland with offices

at five locations in Ireland, UK, Asia and the US, and its

customer-base of more than 250,000 users is based in 29

countries worldwide. QUMAS delivers a compliance model

that standardizes and integrates the common elements of com-

pliance tasks across the organization. This allows convergence

of all compliance programs onto a single platform, radically

reducing the cost of compliance and creating competitive

advantage. Founded in 1994, the company has a long and

proven track record in the regulated life sciences industry, and

is required to comply with a number of regulations, listed in

Fig. 3. QUMAS had employed a classic Waterfall approach

since the company was founded. However, this approach

resulted in a long time-to-market and a large release overhead,

which were seen as drawbacks in the quickly changing market

that QUMAS is operating in. As a consequence, they have

adopted and augmented the Scrum methodology over a period

of approximately two years.

B. Research Method

The objective of this research was to investigate how an

agile development approach can meet the rigorous standards

required in regulated environments. To that end, we conducted

a case study. Case studies are appropriate to answer “how” or

“why” questions, and to study a contemporary phenomenon

within its real-life context, in particular when the boundaries

between the topic of study and its context are not clearly

evident [47]. Given the fact that very few studies of agile

methods in regulated environments exist, the case study can

act as a useful “revelatory” case [47].

A commonly cited limitation of the case study approach

is its lack of generalizability, as findings of a case study are

typically specific to the case study. However, this is due to a

misconception of the term “generalization,” since the aim of a

case study is not to seek statistical generalization, but rather to

seek theoretical generalization [47][48], or even to construct

a theory [49]. Therefore, the concept of validity, and external

validity in particular in the case of generalization of case study

results, is dependent on the type of research. Furthermore,

the “thick descriptions” [47] provided by the case study

were considered much more valuable than generalizability of

results.

C. Data Collection and Analysis

Informed by the established guidelines for doing case study

research [47], we developed a case study protocol following

the template and recommendations offered by Brereton et

al. [50]. We focused our data collection on identifying how

the organization implemented the Scrum methodology, and

to identify what changes were made to the standard Scrum

framework shown in Fig. 1. Data were collected during six

workshop sessions located at the organization, each lasting

two to three hours and involving two to four participants.

The workshop meetings were held over a time period of 15

months. Such a prolonged involvement is a recommended

strategy to establish validity [51]. We collected data from

various sources in order to achieve triangulation across data

sources, which helps to establish reliability of the findings

[51]. Sources of data were semi-structured interviews with

key members of staff (including the CEO, Vice President

(VP) Development & Support, VP of Quality & Customer

FDA (Food and Drugs Administration)

• FDA - 21 CFR Part 820 (Quality system regulation)
• FDA - 21 CFR Part 11 Electronic Records; Electronic Signatures

ISO (International Organization for Standardization)/IEC (Interna-
tional Electro-technical Commission)

• ISO 9000 Quality Management
• ISO 9001:2008 Quality Management Systems
• ISO 13485 (Quality Management System (QMS) for the design and

manufacture of medical devices)
• ISO/IEC 15504 (Process assessment models for systems and software)
• ISO/IEC 12207 (Common framework for software life cycle processes)
• EudraLex Volume 4 (GMP) – Annex 11 “Computerized Systems”

ISPE International Society for Pharmaceutical Engineering)

• GAMP5 (Good automated manufacturing practice (GAMP) guide for
validation of automated systems in pharmaceutical manufacture)

• GXP

Fig. 3. Regulations and Standards applicable to QUMAS.

866

Relations Management (CRM), Development Project Manager,

Scrum Master, team leads and developers). The interviews and

demonstrations were digitally recorded with the participants’

consent. We also had full access to all documentation relating

to software development and had access to the tools used to

support the software development process in the environment.

We analyzed the data using qualitative techniques described

by Seaman [52]. An audit trail was established by transcribing

the interviews and written notes through memoing. This in turn

helped in independent analyses and cross-comparing findings,

facilitating triangulation across researchers as well as peer

debriefing, which are also recommended practices to increase a

study’s validity [51]. After analyzing the data, we sent several

draft versions of our report to key informants at QUMAS. This

is a form of member checking, and is a recommended practice

for qualitative studies [51].

VI. THE AGILE DEVELOPMENT APPROACH AT QUMAS

The QUMAS Scrum software development life cycle pro-

cedure is formally documented. All developers are required

to read and sign an “understood” declaration. The product

development process at QUMAS is directed by the Product

Council which consists of the relevant senior management

from development and support, quality, sales and marketing

(see Table I). The purpose of the Product Council is to set

overall objectives, approve key phases and make strategic

decisions. They identify the personnel and resources required

for the project management plan and timeline. The Council

meets four times per year as standard. However, meetings can

be called at any time to address major items as they arise.

Once product development is sanctioned by the Product

Council, a product development team must be appointed. Each

team member’s name must be assigned when the team is

formed. This is essential in order to identify the personnel

resources required for the project management plan. The core

team members are the Product Owner, the Scrum Master

and the lead developer. The Scrum Master is responsible for

progress and prioritization of work items on a day-to-day basis.

The product development team will meet regularly to review

implementation progress.

The agile development approach at QUMAS is supported by

a number of products from the Atlassian (www.atlassian.com)

toolset as described in Table II.

VII. REGULATORY COMPLIANCE AT QUMAS

The augmented Scrum implementation for regulated

environments (which we label R-Scrum) as enacted by

QUMAS is presented in Fig. 4 below. The grey-shaded fea-

tures are those enhancements added to the generic Scrum

method (depicted in Fig. 1 above) to meet the compliance

requirements of a regulated environment. Below we discuss

these enhancements as they arise according the regulatory

compliance factors outlined in Fig. 2 above.

TABLE I
QUMAS PRODUCT DEVELOPMENT TEAM ROLES

Title Role

Product
Sponsor

Executive sponsor of product development. Make key
business decisions. Report to board.

Scrum
Master

Overall project management responsibility. Produce the
project management plan & sprint plans. Liaise
between the VP of Development & Support, VP of
Quality & CRM and project team. Ensure that the
project time, quality, and functionality criteria are met.

Product
Owner

Represents the customer. Extensive knowledge of
regulations and the business domain and expert on
usage of product. Works closely together with Scrum
Master to define and prioritize backlog.

VP of
Quality (QA)
& CRM

Verify that the output(s) from each sprint adhere to the
required procedures and standards.

VP of
Development
& Support

Ensure that acceptable progress is gained. Act as
advisor to the Scrum Master and product development
team members & update Executive Management
including the CEO. Overall responsibility for the
development team and proxy for Product Sponsor if
required.

Software
Developers

Coding and debugging of software. Produce required
installation and associated user documentation where
required.

Quality
Control

Produce system test documentation and execute system
test scripts in line with required standards and product
specification. Document all test results for release
review.

A. Quality Assurance

QUMAS have a very strong internal quality management

system and quality culture. The development workflow is

formally defined in JIRA (see Table II). All development

sprints are audited by QA, who are independent of the de-

velopment function, to ensure compliance with the defined

procedure. These audits are completed within three days of

TABLE II
ATLASSIAN TOOLSET IN USE IN QUMAS

Tool Description

JIRA Issue and bug tracking, project management, workflow
engine

Fisheye Source code search. It integrates JIRA with the source
code repository and provides additional information on
source code changes for easy interpretation. It links
source code changes to JIRA issues and also supports
the use of the Crucible tool.

Confluence Enterprise wiki used by project teams to share design
information

Greenhopper Agile planning and project management

Bamboo Continuous integration (CI) server for source code
under development

Crucible Peer code review implemented as an addition to
Fisheye making it easy to review code changes, add
comments and record outcomes efficiently

867

the end of each sprint. This mode of “continuous compliance”

means that QUMAS could “theoretically release after every

sprint,” according to the VP Development and Support, a

point we will return to again in the Effectiveness section

(Section VII-C) below. Under the previous, waterfall-based

development process, while each output produced was subject

to QA review and approval, audits to approve releases were

far less frequent, no more than once per year typically.

QUMAS project estimation is based on hours per task.

At the end of each day, developers record the hours spent

completing their tasks for the day. Before the daily Scrum

meeting each morning, the Scrum Master can assess how

development is progressing and ascertain whether there are any

potential delays or overruns that need to be addressed. At the

end of each sprint (typically on a Friday), the Sprint Review

is a half-day meeting which identifies tasks not completed

or tasks that have newly arisen and these are fed back to the

Product Backlog for consideration in future sprints. The Sprint

Retrospective meeting is combined with the Sprint Planning

meeting (typically on a Monday) at the start of the sprint and

the focus is primarily on improving estimations, using the data

from completed tasks in the sprint.

Development is also guided by templates which guide de-

velopers through the process. For example, a design template

is automatically presented to developers on initiation of design

tasks. This template identifies any related stories, a list of

business rules that must be adhered to, any user interface

issues and an explanation of fields within the user interface,

user actions, access control, and error and exception handling.

Developers are trained on the use of documents and templates

as part of the induction process for new employees.

Peer code review is also practiced and formally monitored in

what is termed the “dev check” process. This ensures that the

up-to-date design page is in Confluence, that code is checked

in, coding standards are adhered to, and unit tests are run.

Dev checks are performed for each task. Code refactoring is

also systematically practiced. This is generally incorporated

through refactoring stories.

As already discussed above, the implications of more fre-

quent production of software for approval and review pro-

cesses can be significant. Sprint cycles at QUMAS typically

follow three-week intervals. QA attend the sprint reviews and

retrospectives and formally approve every sprint cycle within

two to three days of the end of the sprint. This requires the

integration of all the requisite information to provide evidence

of regulatory compliance subsequently. QA audits typically

last a half-day and identify issues of non-conformance, or

lack of traceability, or tasks not fully closed in line with

predefined procedures, guidelines and sprint plans. Any issues

are formally identified in a non-conformance report which

includes a root cause analysis of non-conformance. This is

fed back to the Product Backlog for resolution in a subsequent

sprint. According to the VP Quality and CRM, the final QA

release process is much more efficient than when following

a waterfall process: “QA audits are done at the end of each

sprint which allows for improved visibility, traceability and

measurement so we have no unexpected exceptions to address

at final release. We are just confirming the final release.”

This mode of ‘continuous compliance’ is greatly facilitated

by the traceability afforded by the toolset—an issue considered

in Subsection VII-D below.

B. Safety and Security

Risk mitigation is facilitated greatly by the transparency of

being able to ascertain project status at a glance and in real-

time, the continuous compliance phenomenon discussed ear-

lier. QUMAS also operate a four-stage prioritization scheme

for tasks and bugs, ranging from priority P1 (critical) to

priority P4 (cosmetic). This allows for better prioritization of

key risk factors. In terms of product security, for example,

the FDA require relevant regulated industry sectors to adhere

and comply with the 21 CFR Part 11 regulation. In line with

this regulation QUMAS software products automatically and

3 Weeks

Sprint

backlog
Product

Backlog

Shippable

product

Daily

standup

meeting

The Team + User doc.

Product owner

Scrum Master

Sprint

Planning

Meeting

Dev. Check

3 Months

QA Check Point

Sprint review

+ demo

1 day
1 task

Non-conformance

report

Feedback

Product

Strategy

Product Council

Marketing

demo material

Quality Control

“Hardening”

sprint

Updated design

Initial

design

Fig. 4. R-Scrum: Regulated Scrum implementation at QUMAS.

868

securely binds the authenticated user’s electronic signature

and provides automatic required protection in the form of

password expiration and unsuccessful logins. Full user audit

trail capability is also provided in the product. In terms of

process security, QUMAS have full audit trail visibility at

all stages of the agile process, and only employees with

the required security credentials can participate in the agile

process.

Risk is managed through the project and is the responsibility

of the Scrum master. Typically, stories of equal value are

prioritized by risk, using the classification mentioned above.

If difficulties arise, then the team have more time to either

mitigate or avoid the risk. For example, if developing for

a novel platform, early consideration of technically difficult

issues allows a potentially greater number of sprints to resolve

issues that arise if necessary. QUMAS also provide support to

customers who adopt a risk-based approach to validation in

line with regulatory guidelines, by allowing the customer to

leverage the functional testing performed by QUMAS during

the agile process. Customer access to this test and associated

process information is managed in a controlled manner.

C. Effectiveness

Effectiveness is about satisfying user needs and delivering

high value with high usability to customers. Having the

Product Council direct development ensures alignment with

business strategy is formally considered at least once per quar-

ter. Also, a documentation person is a member of the Sprint

team ensuring a link between development and documentation

and support.

Agile methods such as XP recommend an onsite customer;

that is, co-location of developers and customers with a view

to directly validating and prioritizing requirements. While

QUMAS do not have an onsite customer typically, the surro-

gate for this role is the Product Owner. The Product Owner and

Scrum Master are deeply involved in sprint planning and sprint

review meetings, thus affording an opportunity at three-weekly

intervals for detailed feedback on desirable functionality and

how it should be prioritized from the customer perspective.

Under the previous waterfall process, sales and marketing

were consulted about requirements at the beginning of the

project, and the resulting requirements specifications were

rigidly adhered to during subsequent development phases.

The frequent delivery of working software inherent to the

agile development process has also had major benefits for

QUMAS. Because the software can exhibit functionality which

has been prioritized, this can be demonstrated to customers

early. For a newly developed product, several customers pur-

chased the new software in advance of its formal release on

the basis of the interim working functionality that could be

demonstrated. This would not have been possible under the

previous waterfall development process according to the VP

Development and Support. However, in the spirit of satisfying

customer requirements, QUMAS have committed to being

reactive to the specific needs of these customers. Given the

cadence of three-week sprints, QUMAS believe that customer

requests could be implemented and delivered in about five to

six weeks if necessary under the agile development process.

The agile development process also links validated builds of

the software product with the relevant demonstration package

test data. Pre-sales personnel can identify features they wish to

demonstrate, select the appropriate validated build containing

those features and the relevant demonstration package test

data to show the new software to potential customers, and be

confident that the demonstration will progress smoothly. This

is a major benefit over the previous process. Previously, pre-

sales personnel had to manually prepare demonstration mate-

rial, which was a very time-consuming process. Furthermore,

because of the inevitable likelihood of a greater prevalence

of bugs in newer releases of software, pre-sales personnel

tended to choose more stable software releases, perhaps more

than six months old, when demonstrating to customers. As a

result, newer functionality tended not to be included in those

demonstrations.

As QUMAS produce software products for use in regulated

environments they are subject to regular customer audit. The

scope of these audits includes the QUMAS agile process for

product development. The feedback from customers conduct-

ing these audits is that the time involved in performing the

audit is greatly reduced as a result of the automated trace

process. As the verification by the auditor of functionality

implemented in the product via the agile process is now

more effective and efficient, as the information is immediately

retrievable in electronic format.

In order to verify that the agile process defined by QUMAS

was in line with the expectations of their regulated customer

base, QUMAS engaged with senior members of the GAMP

EU and demonstrated the process. The feedback received was

that the outlined process was deemed in accordance with the

expectations of the industry.

D. Traceability

End-to-end traceability is a significant overhead in regu-

lated environments. Traceability is often accomplished using

spread-sheets which are printed and subsequently manually

updated. Traceability is arguably the area in which the agile

development process has had the most impact. The VP De-

velopment and Support characterized it as ‘living traceability’

in that there is complete transparency into the development

process at any point in time. In the past, documents and

artifacts were produced periodically and collated to produce

traceability evidence. Now there is full end-to-end traceability

established by the toolset (see Table II). Links are automati-

cally established as developers check in code that implements a

certain task. Should a developer check in code without linking

it to a task, then the dev check will identify this as an error.

Initial requirements can be traced to stories, and in turn to

tasks and sub-tasks, to design documentation, to source code,

to code reviews, to builds, to unit tests, to rework and bug-

fixes, to function and system testing, to production code. The

toolset can be interrogated to trace which build fixed which

bugs and which build implemented which functionality.

869

QUMAS undergo external audits of their development pro-

cess about once per month. The extra transparency afforded by

the implementation of their agile development approach has

engendered further confidence to the extent that audits may

now take place without requiring the attendance of the Product

Manager and Test Manager. According to the VP Development

and Support, the absence of these managers would not have

been contemplated when audits were taking place in the past.

Furthermore, audits which used to take two days are now being

completed in less than a day, often with no open issues to

respond to, and resounding approval from audit assessors who

appreciate the complete transparency and flexibility afforded

by the living traceability allowing them to interrogate aspects

of the development process at will.

E. Verification and Validation

Requirements are validated directly with the Product Owner

at the start of each development sprint. Unit tests are generated

as part of the coding tasks. The unit tests are checked

in with the functional code and therefore link to the code

automatically. These tests are executed during the continuous

build/deployment. The build automation is done via Bamboo,

which also offers the option to invoke analytical tools, such

as static code analyzers. Code changers and unit tests are run

and changes to test results across builds can be easily linked

to problematic check-ins of code. Unit tests are done within

JIRA and functional tests are the responsibility of the test team

using a specific quality center testing suite. In a typical build, a

regression test suite of more than a thousand unit tests are run,

which take 40 to 60 minutes to execute. This regressions test

suite has been written by the developers over time, and new

tests are added for new functionality and defect fixes. Any

failures are recorded and emails are sent to the developers

and Scrum Master. Continuous integration is implemented

using the Bamboo tool. Every four hours the code base is

monitored and any code check-ins trigger a new build at that

point. Another tool that is integrated with Bamboo is NCover.

This indicates the code coverage being tested and the goal in

QUMAS is to achieve 80% coverage. Actual coverage can be

monitored by NCover and presented in Bamboo reports.

A feature of the R-Scrum is the ‘hardening sprint’ (see

Fig. 4 above) which is run to ensure release readiness before

final release. This ensures the shippable product versions from

prior sprints can become a releasable product. QA will not

sanction a release with any open issues. User documentation,

structures on FTP site for customer download, marketing

material etc. must all be integrated. At this stage, ‘definition of

done’ must also include regulatory compliance. This reinforces

the view that software development in regulated environments

must satisfy two customers: the end-user and the regulatory

bodies [53].

VIII. DISCUSSION

The suitability of agile methods in regulated environments

has long been an assumed limitation of these methods [2].

The findings of this study, however, show that agile and

regulated environments are not incommensurable. In fact, our

findings suggest that agile is highly suitable when tailored to

meet the needs of regulated environments and supported with

appropriate tools. Table III summarizes the findings of our

study, organized per principle of regulated environments as

identified in Fig. 2.

A. Lessons Learned and Open Issues

The key lesson from this study is that agile processes

can, in fact, be augmented to work very well in regulated

environments. Appropriate tool support is vital. QUMAS were

able to implement an integrated toolset that replaced a suite

of stand-alone systems for bug-tracking, code reviews, source

code repository and document compliance. This integrated

toolset did much to support full end-to-end traceability – an

up-to-date accurate snapshot in real-time or ‘living traceability’

as it is termed in this paper.

In terms of quality, a number of significant contributions

arise through the agile process. For example, there is frequent

alignment with business strategy. Also, QA acceptance of the

new mode of working has been key to delivering quality in a

mode of ‘continuous compliance’ via QA Checkpoint audits at

the end of each sprint. Development is more effective through

the constant validation of product and sprint backlogs based

on feedback from the Product Owner, QA and customers. The

frequent releases and active engagement with customers means

that customer requests can be facilitated within about five

weeks. Continuous integration (every four hours) ensures that

sales and marketing can demonstrate the latest functionality to

customers, confident that the software will be fully functional.

One issue identified by management at QUMAS had to do

with the perception of ‘short termism’ in planning-granularity

that arises from the agile process. Because the product backlog

tends to only include stories that are scheduled in the next two

releases, this leads to a feeling that the planning horizon is

more short term. Under the previous waterfall process, long-

term requirements were identified in the design document to

guide development over the longer term. However, the VP

Development and Support acknowledged that this long-term

view was largely a perception which was not always fulfilled,

and the faster cadence of the agile process ensured more

flexibility to respond to market changes and more accuracy

in planning estimates.

The new process also has had major implications for the

QA function in terms of faster conformance review cycles as

product requirements were being delivered, tested and verified

in a sprint approach as opposed to being delivered in one

release candidate build for verification. QA now perform audits

more frequently—every three weeks at the end of each sprint,

rather than at final release time as in the previous process.

However, QA are completely engaged with the new process,

a factor that was considered absolutely necessary by QUMAS

management. The automated traceability also better supports

the impact assessment from the QA side, when applying

change to existing verified functionality.

870

TABLE III
KEY FINDINGS OF THE STUDY.

Concern Assumed conflict - Agile in Regulated Study Findings

Quality
Assurance

Time-to-market is a key constraint
recognized by agile methods and the
concept of delivering ‘good enough’
working software in an optimum timescale
takes precedence over ‘perfect’ software.

Quality enhanced by:
• Product, release and sprint backlogs constantly validated with developers and

customers.
• Continuous integration and systematic refactoring.
• QA function very supportive of agile process believing benefits outweigh

inconvenience of changes to traditional working practices

Safety &
Security

Agile thought to lack formal planning, risk
mitigation.

• Continuous compliance
• Risk also mitigated by risk prioritization–tackling the most significant risks first.

Effectiveness Adherence to regulations and standards
slows down development process and
delivery speed to customer

• Frequent releases enable pre-sales and early delivery to customer.
• Ability to rapidly respond to customer change request within 5 weeks.
• Active management allows the Scrum Master to correct course on a daily basis.
• Updates are visible in real time to all team members.
• Documentation person to ensure a link between development, documentation and

support.
• Always up-to-date sales & marketing material.

Traceability Lack of attention to documentation in agile
inhibits traceability.

• Powerful toolset providing extensive and automatic living traceability.
• Impact assessment of changes are easier to identify via the automated traceability.
• QA conducts internal audits much more often; external audits are much shorter and

done without key staff.

Verification
& Validation

Requirements specification is
time-consuming, testing

• Continuous integration supported by powerful toolset.
• Automated tests and automatic link to code facilitate easy coverage reporting.

The change to writing stories to guide development is

also a challenge, especially in terms of writing stories with

the right level of detail and granularity. The Scrum Master

identified an example as “the product shall be scalable” as

an inappropriate choice. The principle adopted at QUMAS to

guide story writing is that they be ‘test-driven.’

B. Limitations of this Study

We are aware of a few limitations of this study, which we

discuss next, following a common classification of reliability

and external and construct validity [47]. Since our study does

not seek to establish any causal relationships, we do not

discuss threats to internal validity.

Reliability. In order to increase this study’s reliability, we

developed a study protocol as well as interview guides, as

mentioned previously. As outlined in Section V, we employed

several practices to establish the reliability of our study, such

as prolonged involvement, data triangulation, peer debriefing

and member checking, as well as establishing an audit trail.

Construct validity. As pointed out in Section III, we

identified a number of recurring themes based on existing

literature (see Fig. 2). While these themes are closely related,

each has a distinctly separate focus and as such, taken together

they provide an in-depth and multi-faceted perspective on the

critical aspects of this topic.

External validity. A point that is often raised in case

study research is that findings are not generalizable to other

settings. However, the purpose of this study was revelatory

and exploratory rather than explanatory. While there are many

different regulated environments, this study gives an in-depth

account of the application of agile methods in one such

domain. The augmented Scrum model shown in Fig. 4 can

provide a starting point for other organizations in regulated

domains. More research is necessary to establish how Scrum

and other agile methods can be scaled to other regulated

domains.

IX. CONCLUSIONS AND FUTURE WORK

This paper presents an in-depth account of how agile

methods can be scaled to regulated environments. Given the

successful exemplars of the use of agile methods in large

teams and distributed development, the use of agile methods

in regulated environments may be seen as the ’final frontier’

for agile methods.

Overall, the agile development process as it has been

adopted and augmented in QUMAS has worked very well

in the regulated environment. Compliance is more immediate

and evident in real-time—continuous compliance as we have

labeled it here. Also, the concept of living traceability has been

coined to reflect the end-to-end traceability that has been facil-

itated by the toolset that has been implemented to support the

agile development process. In summary, it seems to be the case

that the assumption of incompatibility between agile methods

and regulated environments is more accidental than essential.

Thus, the V-lifecycle model which is frequently adopted in

regulated environments appears compelling in that there is a

clear sense of traceability between the levels of resting and

the levels of analysis, design and coding activities. However,

as pointed out by one of our practitioner interviewees: “Agile

is a lot of small Vs” and the levels traceability can clearly be

accomplished in the agile mode of development also.

Developers and QA have also embraced the agile de-

velopment process very enthusiastically and can see major

benefits. However, senior management are no less enthusiastic

about the new process. This is an important issue as research

suggests that agile methods are developer-centric and are

871

typically enthusiastically embraced by developers, but manage-

ment require some convincing as to the actual business benefits

of agile methods. Agile methods are perceived to be unsuitable,

and not adopted lest they endanger the organization’s processes

and reputation. However, the business benefits have been very

evident in QUMAS, and these findings may provide direct

motivation to other organizations that wish to explore how

they can benefit from adopting agile methods. To that end,

the standard Scrum model that is “wrapped” with additional

elements (artifacts and roles) offered in Fig. 4—that we labeled

R-Scrum—provides a directly usable framework that can be

adopted or further tailored as needed.

We plan to build further on the findings of this study as

follows. Firstly, we are conducting further case studies in other

regulated domains. Secondly, we will also extend our study to

other agile methods, in particular XP. Furthermore, while the

current study presents a qualitative account of augmenting the

Scrum framework, we are also designing quantitative studies

to study this topic in further detail.

ACKNOWLEDGMENTS

The authors wish to thank Joanne O’Driscoll for her input

to this paper. This work was supported, in part, by Science

Foundation Ireland grant 10/CE/I1855 to Lero.

REFERENCES

[1] VersionOne, “6th annual state of agile survey: The state of agile
development,” 2011.

[2] P. Abrahamsson, K. Conboy, and X. Wang, “‘lots done, more to do’: the
current state of agile systems development research,” European Journal

of Information Systems, vol. 18, 2009.

[3] L. Williams and A. Cockburn, “It’s about feedback and change,” IEEE

Comput., vol. 36, no. 6, 2003.

[4] L. Cao, K. Mohan, P. Xu, and B. Ramesh, “How extreme does extreme
programming have to be? adapting xp practices to large-scale projects,”
in 37th Hawaii Int’l Conf. System Sci., 2004.

[5] T. Kähkönen, “Agile methods for large organisations–building commu-
nities of practice,” in Agile Development Conference, 2004.

[6] M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M. Stupperich,
D. Kiefer, J. May, and T. Kähkönen, “Agile software development in
large organisations,” IEEE Comput., vol. 37, pp. 27–34, 2004.

[7] M. Kircher, P. Jain, A. Corsaro, and D. Levine, “Distributed extreme pro-
gramming,” in XP2001-Extreme Programming and Flexible Processes in

Software Engineering, 2001.
[8] D. Stotts, L. Williams, N. Nagappan, P. Baheti, D. Jen, and A. Jackson,

“Virtual teaming: Experiments and experiences with distributed pair
programming,” in Extreme Programming/Agile Universe, 2003.

[9] D. Boland and B. Fitzgerald, “Transitioning from a co-located to a
globally-distributed software development team: A case study at Analog
Devices, Inc.” in 3rd Workshop on Global Software Development, 2004.

[10] O. Cawley, X. Wang, and I. Richardson, “Lean/agile software de-
velopment methodologies in regulated environments–state of the art,”
in Int’l Conf. Lean Enterprise Software and Systems, LNBIP 65, 2010.

[11] B. Boehm, “Get ready for agile methods, with care,” IEEE Comput.,
vol. 35, pp. 64–69, 2002.

[12] S. W. Ambler, “When does(n’t) agile modeling make sense?” 2001,
www.agilemodeling.com/essays/whenDoesAMWork.htm.

[13] M. Mc Hugh, F. Mc Caffery, and V. Casey, “Standalone software as an
active medical device,” in 11th Int’l SPICE Conference, 2011.

[14] D. Turk, R. France, and B. Rumpe, “Assumptions underlying agile
software-development processes,” J. Datab. Manage., vol. 16, 2005.

[15] “Agile Manifesto,” http://agilemanifesto.org/.

[16] M. Fowler and J. Highsmith, “The agile manifesto,” Software De-

velopment, vol. 9, pp. 28–32, 2001.

[17] K. Beck, Extreme Programming Explained. Addison-Wesley, 1999.

[18] K. Schwaber and M. Beedle, Agile Software Development with Scrum.
Prentice Hall, Upper Saddle River, NJ, 2002.

[19] A. Cockburn, Crystal Clear: A Human-Powered Software Development

Methodology for Small Teams. Addison-Wesley, Reading, MA, 2001.
[20] J. Stapleton, DSDM: Dynamic Systems Development Method. Addison-

Wesley, Harlow, England, 1997.
[21] S. W. Ambler, Agile Modeling: Best Practices for the Unified Process

and Extreme Programming. Wiley, 2002.
[22] P. Coad, E. Lefebre, and J. De Luca, Java Modelling in Color. Prentice

Hall, Englewood Cliffs, NJ, 1999.
[23] M. Poppendieck and T. Poppendieck, Lean Software Development: An

Agile Toolkit. Addison-Wesley Professional, 2003.
[24] P. Kruchten, The Rational Unified Process: An Introduction, 2nd ed.

Addison-Wesley Professional, 2000.
[25] H. Takeuchi and I. Nonaka, “The new new product development game,”

Harvard Business Review (January-February), 1986.
[26] J. Sutherland and K. Schwaber, “Business object design and implemen-

tation,” in OOPSLA ’95 Workshop Proceedings, 1995.
[27] ——, “The scrum guide,” 2011, www.scrum.org/Scrum-Guides.
[28] P. Deemer and G. Benefield, “The scrum primer: An introduction to

agile project management with scrum,” 2007, version 1.04.
[29] J. Sutherland and K. Schwaber, “The scrum papers: Nuts, bolts and

origins of an agile method,” 2007.
[30] L. Coyle, M. Hinchey, B. Nuseibeh, and J. Fiadeiro, “Guest editors’

introduction: Evolving critical systems,” IEEE Comput., vol. 43, 2010.
[31] “IEEE Standard Glossary of Software Engineering Terminology,” 1990,

IEEE 610.12.
[32] S. L. Pfleeger, N. Fenton, and N. Page, “Evaluating software engineering

standards,” IEEE Comput., vol. 27, no. 9, pp. 71–79, 1994.
[33] W. Deming, Out of the Crisis. MIT Center for Advanced Engineering

Study, Cambridge, MA, 1982.
[34] R. Vidgen and X. Wang, “Coevolving systems and the organization of

agile software development,” Inf. Sys. Res., vol. 20, no. 3, 2009.
[35] B. Fitzgerald, “Formalized systems development methodologies: A crit-

ical perspective,” Information Systems Journal, vol. 6, 1996.
[36] N. Leveson and C. Turner, “An Investigation of the Therac-25 Acci-

dents,” IEEE Comput., vol. 26, no. 7, pp. 18–41, 1993.
[37] N. Mead, “Who is Liable for Insecure Systems,” IEEE Comput., vol. 37,

no. 7, pp. 27–34, 2004.
[38] P. Abrahamsson, M. Ali Babar, and P. Kruchten, “Agility and architec-

ture: Can they coexist?” IEEE Softw., vol. 27, no. 2, 2010.
[39] A. Tribble, “Software Safety,” IEEE Softw., vol. 16, no. 1, 2002.
[40] T. DeMarco and B. Boehm, “The Agile Methods Fray,” IEEE Comput.,

vol. 35, no. 6, pp. 90–92, 2002.
[41] J. Cleland-Huang, Traceability in Agile Projects. Springer, London,

2012, pp. 265–275.
[42] S. Rakitin, Software Verification and Validation for Practitioners and

Managers, 2nd ed. Artech House, 2001.
[43] F. Mc Caffery, M. Pikkarainen, and I. Richardson, “AHAA - Agile,

Hybrid Assessment Method for Automotive, Safety Critical SMEs,” in
Int’l Conf. Software Engineering, 2008.

[44] S. VanderLeest and A. Buter, “Escape the waterfall: Agile for aerospace,”
in 28th Digital Avionics Systems Conference, 2009.

[45] J. Cleland-Huang, O. Gotel, and A. Zisman, Eds., Software and Systems
Traceability. Springer, London, 2012.

[46] K. Gary, A. Enquobahrie, L. Ibanez, P. Cheng, Z. Yaniv, K. Cleary,
S. Kokoori, B. Muffih, and J. Heidenreich, “Agile methods for open
source safety-critical software,” Softw. Pract. Exper., vol. 41, no. 9, 2011.

[47] R. Yin, Case Study Research: Design and Methods, 3rd ed. SAGE
Publications, Thousand Oaks, CA, USA, 2003.

[48] A. Lee and R. Baskerville, “Generalising generalisability in information
systems research,” Information Systems Research, vol. 14, 2003.

[49] K. Eisenhardt, “Building theories from case study research,” The

Academy of Management Review, vol. 14, no. 4, 1989.
[50] P. Brereton, B. Kitchenham, D. Budgen, and Z. Li, “Using a protocol

template for case study planning,” in EASE, 2008.
[51] J. Creswell and D. Miller, “Determining validity in qualitative inquiry,”

Theory into Practice, vol. 39, no. 3, 2000.
[52] C. Seaman, “Qualitative methods in empirical studies of software

engineering,” IEEE Trans. Softw. Engineer., vol. 24, no. 4, 1999.
[53] M. Mc Hugh, F. Mc Caffery, B. Fitzgerald, K. Stol, V. Casey, and

G. Coady, “Balancing agility and discipline in a medical device software
organization,” in 13th Int’l SPICE Conference, 2013.

872

