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1 Introduction

Perhaps the most valuable resource of a software organization is its developers: it is
the people within the organization that design, create, develop, and ship the software.
Ensuring that developers are satisfied in their job is important, as this is a strong predictor
of an intention to leave the organization (Sharma and Stol, 2020). Understanding what
increases developers’ job satisfaction is therefore useful to organizations. Besides keeping
developers happy, organizations may wish to encourage certain types of behavior, for
example, sharing code and knowledge. One potential tactic to influence people’s behavior
is gamification, a technique that is applicable in many different contexts and which has
also been explored in software engineering (Dubois and Tamburrelli, 2013; Fraser,
2017; Dal Sasso et al., 2017). The Oxford English Dictionary (www.oed.com) defines
gamification as follows:

The action or process of making something into or like a game; spec. the applica-
tion of elements of game playing (such as point scoring, competition with others,
etc.) to other areas of activity, typically to encourage engagement with a product
or service.

This suggests that by gamifying a process, participants’ engagement may increase.
While the phrase “engagement with a product or service” in the definition above might
imply that participants are end-users or customers, in a software development context
these participants are software developers.

The term gamification was first coined in 2002 by Nick Pelling, a game developer
(Marczewski, 2013, p. 24). Studies of gamification in software engineering literature tend
to focus on gamification techniques in software products (gamified software), gamifica-
tion of the development process, or gamification in software engineering education. In
all three strands of research, the focus tends to be on increased engagement. For gamified
software this means increased engagement of end-users, and as suggested above, for
gamification of the development process this means increased engagement of developers.

In this article we focus on gamification of the development process. We observed
a number of shortcomings in the gamification literature. First, few rigorous empirical
studies have focused on gamification mechanisms in industry contexts with professional
developers, with a few notable exceptions (Herranz et al., 2018; Snipes et al., 2014;
Neto et al., 2018; Marques et al., 2020). Many papers in this domain propose conceptual
frameworks or new tools, some of which have been empirically evaluated. Several
studies have been conducted with students, and while qualitative findings suggest that
gamification techniques have positive effects in terms of sound software engineering
practices, many of the quantitative studies have not found conclusive evidence in favor
of gamification in software engineering. We suggest that one potential reason for this is
that prior quantitative studies have focused on analyzing direct relationships between
variables, whereas these relationships may be much more complicated in reality. For
example, relationships between variables may be mediated by a third variable which
acts as a ‘mechanism’ that explains how the criterion and outcome variable (e.g. quality
of code or documentation) are related. In this study, we investigate the link between
gamification participation and job satisfaction, and posit that developer engagement is
such a mediating mechanism.

While several studies have suggested that gamification links to an increase in engage-
ment of developers, the term “developer engagement” has not been clearly defined in
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the software engineering literature. Thus, this is a second shortcoming in the software
engineering literature. Without a clear definition, it is challenging to interpret what
“increased engagement” means as it pertains to software developers. The use of the term
engagement is often conflated with ‘participation,’ but the latter is a distinct concept and
mixing these terms hinders precise measurement. Based on prior literature, we propose a
definition that can be used in our study of developer engagement.

Third, we lack an understanding of why software developers might participate in
gamification initiatives. Much of the prior work in this area has investigated whether
gamification of software development tasks can lead to outcomes such as better quality of
code or documentation (Dubois and Tamburrelli, 2013), developer motivation (Herranz
et al., 2015), or adoption of tools (Snipes et al., 2014). Numerous studies also have
studied motivational affordances, such as points and badges (Hamari et al., 2014). Such
motivational affordances, however, exist within an existing gamification initiative—that
is, participants are already active at that point. To the best of our knowledge, very little
research has focused on what might draw software developers to a gamification initiative
in the first place. Based on prior literature and Personal Investment theory (Beecham
et al., 2008; Dubois and Tamburrelli, 2013; Braskamp, 2009), we suggest that developers
seeking to learn new skills and technologies are drawn to gamification challenges that
offer such learning opportunities.

Fourth, while engagement is typically considered as a positive outcome, one might
wonder what benefits having engaged software developers offers to software organiza-
tions. Very little research indeed has focused on the consequences of having engaged
developers (Alhammad and Moreno, 2020). What positive outcomes might an organi-
zation expect from engaged developers? In this article, we theorize that gamification
may help to achieve an outcome that is of particular interest to software organizations:
job satisfaction (Sharma and Stol, 2020). We study the relationship between developer
engagement and job satisfaction, the latter being a well-known predictor of employees’
intention to stay in their job.

We conducted a firm-level survey study at one organization that had started a gamifi-
cation platform to encourage developers to start collaborating across teams. To focus
our study, we developed a theoretical model (see Sec. 3) grounded in prior literature,
which we subsequently sought to test using structural equation modeling (Sec. 4). To
that end, we collected sample data from two sources, namely a developer survey and the
company’s GitLab installation. The results of our analysis provide empirical support for
our model (Sec. 5). We find that developers participate in the company’s gamification
challenges to learn new skills and technologies, but that participation is moderated by the
level of expertise that developers already have. Further, the results of our analysis show
that participation is associated with a higher level of developer engagement. This, in turn,
is positively and significantly associated with job satisfaction, an outcome that should
be of great interest to software organizations (Aurum et al., 2008; França et al., 2020;
Sharma and Stol, 2020). We conclude by discussing these findings and implications for
practice and research.

2 Background

Deterding et al. (2011) proposed a “soundbite” definition of gamification: the use of
game design elements in non-game contexts. Gamification seeks to change people’s
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behavior through increasing their motivation to act (Richter et al., 2015). It does so
through motivational affordances (Hamari et al., 2014); these include giving awards,
points, or badges when a person completes a task, or increasing a person’s level or rank as
they participate over time (Hamari et al., 2014; Richter et al., 2015). The value of points
or a rank does not solely lie in having them, but in the implied reputation, identification
with a certain group, or social approval (Deterding, 2012). The use of avatars is another
technique, whereby the avatar represents the person participating in the gamified process.
Gamification seeks to entice participants to exhibit certain behavior—and in a software
engineering context, examples include the writing of better quality documentation, better
commit messages, to writing more tests.

In the remainder of this section we summarize prior work on gamification in software
engineering (Sec. 2.1). We then focus on the concept of developer engagement, which has
remained largely undefined within the SE literature, and provide a definition (Sec. 2.2).

2.1 Gamification in Software Engineering

Whereas gamification is a topic that could be applied in any domain, in this section we
focus specifically on gamification in a software engineering context. Several scholars
have identified gamification as a potentially useful approach in software engineering
(Yilmaz et al., 2019; Fraser, 2017; Dal Sasso et al., 2017). Numerous review papers have
reported overviews of gamification in software engineering (Alhammad and Moreno,
2020; Pedreira et al., 2015; Alhammad and Moreno, 2018; Mäntylä and Smolander,
2016; García et al., 2017; Machuca-Villegas and Gasca-Hurtado, 2018); a recent tertiary
study identified no fewer than 12 secondary studies (García-Mireles and Morales-Trujillo,
2019). The software engineering literature that has focused on gamification consists
primarily of three strands:

– Gamification of the software product. These efforts focus on incorporating gami-
fication elements into a product that ultimately seek to change end-user behavior
(Morschheuser et al., 2018; Vargas-Enriquez et al., 2015).

– Gamification of the software development process. These efforts focus on incorporat-
ing gamification elements into the develpment process that seek to change developer
behavior (García et al., 2017; Marques et al., 2020).

– Gamification of software engineering education. These efforts focus primarily on the
use of gamification techniques in the teaching of software engineering to students,
and as such seek to change student behavior (Alhammad and Moreno, 2018).

In this article we focus on gamification in a development process context; that is,
the use of gamification to change and stimulate developer behavior. Table 1 presents
prior empirical studies that have focused on gamification of the software development
process, which are related to our study. That is, we selected only those papers that sought
to study how gamification can help change developer behavior, excluding any paper
that did not present any empirical study. We summarize and classify previous studies
based on their research strategy as described by Stol and Fitzgerald (2018). We note
that some studies have been conducted with students; in several cases we categorized
those as field experiments, rather than laboratory experiments. The reason for this is
that the experiments were conducted in a setting that was natural and pre-existing to
the students, for example, when the experiment was conducted as part of a software
engineering project course.
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Prior reviews show that many papers on gamification present proposals for incorpo-
rating gamification in software development activities, without presenting any empirical
study. Other papers present prototype tools, sometimes with an empirical evaluation. Of
the papers presenting an empirical study, most were conducted with students (see Table 1)
(Pedreira et al., 2015; Alhammad and Moreno, 2020; Badihi and Heydarnoori, 2017;
Singer and Schneider, 2012). Relatively few papers report field studies conducted in
industry (Herranz et al., 2018; Neto et al., 2018; Marques et al., 2020; Snipes et al., 2014;
Passos et al., 2011). Passos et al. (2011) pilot-tested the use of role-playing game features
in software task management in an industry setting, and found encouraging results.
Snipes et al. (2014) applied game elements to an industry setting at ABB and found that
most developers were interested in using games as a way to help them learn and improve
software development practices. Marques et al. (2020) studied whether gamification
contributed to adoption of Scrum practices. While their findings suggested that gamifica-
tion had a positive influence on a Scrum team’s ‘atmosphere,’ the authors did not find
conclusive evidence that gamification improved to adopt Scrum practices. Alhammad
and Moreno (2020) also reported a lack of evidence for the impact of gamification.

Several studies include the demonstration or propose a new tool that offers feedback,
so as to stimulate certain behavior (Snipes et al., 2014; Singer and Schneider, 2012; de
Melo et al., 2014; Sukale and Pfaff, 2014; Badihi and Heydarnoori, 2017). For example,
Sukale and Pfaff (2014) proposed QuoDocs, a web-based system that awards points to
contributors of documentation. However, no empirical evaluation was presented. Badihi
and Heydarnoori (2017) developed a code summarization plug-in for Eclipse that relies
on gamification mechanisms to attract contributors.

Gamification techniques have also been used to encourage developers to share
knowledge. The last decade or so has witnessed the rise of social media such as Twitter
and social coding platforms such as GitHub (Dabbish et al., 2012) and StackOverflow.
StackOverflow is a popular Q&A platform that offers an attractive and purpose-built
alternative to traditional mailing lists when it comes to sharing knowledge (Vasilescu
et al., 2014). StackOverflow uses gamification techniques such as member reputation
and badges (Grant and Betts, 2013; Li et al., 2012b). Gamification is closely linked to
the topic of crowdsourcing, not only in a general context (von Ahn, 2006; Morschheuser
et al., 2016), but also in software engineering (Stol et al., 2017b). The StackOverflow
platform can be seen as a platform for crowdsourcing knowledge (Meldrum et al., 2017),
and Topcoder.com is a popular platform that gamifies software development through
competitions with points and monetary rewards (Stol et al., 2017a). There are numerous
studies of these open platforms in the software engineering literature. Relatively few
studies, however, exist on the use of gamification in software organizations. In order to
understand whether gamification is an effective strategy for software organizations to
pursue, rigorous research based on practical applications is necessary.
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Table 1 Selection of prior empirical studies of impact of gamification on developer behavior

Study Setting and Method Participants Findings

Passos et al.
(2011)

Field study: pilot study to
evaluate a proposed ap-
proach at a small software
development company, using
historical data.

13 professional
developers.

Demonstrates by means of histor-
ical data the viability of gamifica-
tion, but no evidence for its impact.
Involved developers expressed en-
thusiasm about gamification mech-
anisms.

Prause et al.
(2012)

Field experiment (i.e. in a
natural setting) to measures
gamifying developer reputa-
tion scores based on their im-
provements of maintainabil-
ity and internal quality of
source code through writing
JavaDoc.

10 postgraduate
students

No measurable improvement in
quality was observed.

Singer and
Schneider
(2012); Singer
(2013)

Field experiment: quasi-
experiment to evaluate
whether active feedback has
an effect on commit patterns,
in terms of number of
commits and distribution of
those over time, number and
length of commit messages.

students (treat-
ment N=37,
control N=214)

Participants in the treatment group
made significantly more commits,
spaced out more evenly; median
length of commit message was
longer; more commits had a com-
mit message.

Dubois and
Tamburrelli
(2013)

Field experiment to evaluate
whether competition changes
compliance in terms of met-
rics such as branch cover-
age, code duplication and
JavaDoc documentation.

Treatment and
control groups
both consisting
of 32 teams of
2-3 students
each.

Control group only had access
to their own Sonar code analysis
reports; treatment group had ac-
cess to all groups’ reports. Treat-
ment group exhibits slightly better
scores, but results are inconclusive
as no statistical tests are presented.

Snipes et al.
(2014)

Field study to evaluate
whether game-like feed-
back to the development
environment would im-
prove adoption of tools
and practices for code
navigation. Pre-study survey;
event/usage data; post-study
interviews.

Survey N=130
professional de-
velopers; logged
event/usage
data from a
six-person
team using the
gamification tool

Most survey respondents (95%)
would try suggested tools and prac-
tices recommended by an auto-
mated usage tracking system. Col-
laboration and team goals are big-
ger motivating factors than man-
dates and individual awards such
as badges to try new tools and prac-
tices.

Herranz et al.
(2015)

Judgment study. A pilot
study to assess impact of
Gamiware framework on par-
ticipant motivation.

22 undergradu-
ate students

Participants were asked to com-
plete a questionnaire after perform-
ing a number of tasks in teams.
Among the findings was that par-
ticipants judged that the gamifi-
cation of the tasks had increased
their motivation.

Lombriser
et al. (2016)

Field experiment: quasi-
experiment at MaibornWolff
(IT company in Germany);
treatment group was exposed
to 17 game elements in
an online platform for
requirements elicitation.

12 software
developers (N=6
for both treat-
ment and control
group)

No statistical difference in stake-
holder engagement between treat-
ment and control group. Treatment
group produced more user require-
ments which were rated higher in
quality and creativity.

Continued on next page
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Table 1 Selection of prior empirical studies (continued)

Study Setting and Method Participants Findings

Yilmaz and
O’Connor
(2016)

Field experiment: assess
whether gamification helps
to improve developer moti-
vation. Repeat administering
of a survey.

30 software pro-
fessionals

Results suggest that gamification
increases motivation and engage-
ment of participants.

Badihi and
Heydarnoori
(2017)

Judgment study: short eval-
uation survey of the Crowd-
Summarizer tool that gami-
fies the writing of code sum-
maries.

149 undergradu-
ate and postgrad-
uate students

Participants mostly enjoyed the
gamification offered by the Crowd-
Summarizer tool. The tool encour-
aged participants to write sum-
maries (4/5). Gamification ele-
ments such as badges enhanced
code summarization skills (3.4/5).

Khandelwal
et al. (2017)

Laboratory experiment to as-
sess impact of gamification
on code review process.

183 undergradu-
ate students

Experimental results indicate that
gamification does not impact the
code review process. Results from
a post-study survey indicated that
54% of participants enjoyed the
gamified process, and only 9% dis-
liked it.

Marques et al.
(2020)

Field experiment: evaluate
the impact of gamification on
adoption of Scrum practices
by means of a custom Jira
Software app.

32 professional
developers
(‘players in app’)

Results indicate no statistical dif-
ference between baseline and gam-
ified intervention.

2.2 Developer Engagement: Untangling the Conceptual Blurring

Concepts such as customer engagement and user engagement have been well established
and extensively studied in the management and business literature (Van Doorn et al.,
2010; Bitrián et al., 2021). The Oxford English Dictionary’s definition of gamification
(see Sec. 1) explicitly refers to the encouragement of engagement with a product or
service—clearly, this refers to customers or end-users of these products or services,
rather than the creators of those products or services. In a software development context,
we must interpret the term engagement to mean developer engagement, as it is developers
who are targeted when introducing gamification of the development process. Indeed,
several authors have suggested that gamification influences developer engagement (de
Melo et al., 2014; Zichermann and Cunningham, 2011).

Surprisingly, the concept of developer engagement has not been explicitly defined,
despite the fact that the term has been used in the software engineering literature (Adams
et al., 2008; Pedreira et al., 2015; França et al., 2020; Vasilescu et al., 2014). Sukale
and Pfaff (2014) presented a study design that focuses on developer engagement, no
measurable definition is presented. The term engagement is often conflated with partici-
pation (Schaarschmidt et al., 2019; Adams et al., 2008), but these are distinct concepts:
a developer who merely shows up for work is not necessarily an engaged developer.
França et al. (2020, p. 129) also make this point, as they interpret the term engagement
to mean “commitment, hard-working, and interest,” suggesting that engagement goes be-
yond merely showing up for work. In this study we draw a distinction between developer
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engagement and developer participation. While participation is one interpretation of the
term engagement, it is a narrow view on what is commonly meant by engagement in a
context that focuses on employees. Whereas participation is a requirement in any work
setting, engagement is only a potential energy that cannot be required in an employment
contract (Suff and Reilly, 2008).

In their measurement of ‘mean developer engagement,’ Adams et al. (2008) equated
developer engagement with participation in open source projects, using the number of
projects they participated in as a proxy. We argue that counting the number of projects
a developer participates in is not a measure of engagement, but only of participation,
because the term engagement conveys a different connotation, as we discuss in more
detail below.

This conceptual blurring has also been observed in the management literature. For
example, Schaufeli (2013) noted that “consultancy firms have conceptualized engage-
ment by combining and relabeling existing notions, such as commitment, satisfaction,
involvement, motivation, and extra-role performance.” However, each of these are dis-
tinct theoretical constructs: while a person’s commitment, satisfaction, and motivation
are likely to be correlated, each of these represents a different concept. Conflating these
concepts makes a reliable measurement impossible, and so it is imperative to distinguish
them.

As no prior definition was available, we decided to construct a definition in order to be
able to apply it in this study—that is, a definition that is specifically focused on software
developers and which we could measure in a quantitative study. Hence, we sought
to propose a definition that has face validity within a software development context,
and which is consistent with other literature on employee engagement. Intuitively, an
engaged developer is a person who actively performs within an organizational context,
which may be a corporation or an open source project. To define the term ‘developer
engagement’ more precisely in a way that is measurable, we draw on prior literature
to identify two key characteristics. Prior research defined engagement as: “The degree
to which workers identify with, are motivated by, and are willing to expend extra effort
for their employer” (Suff and Reilly, 2008). Devi (2009) defined engagement as “the
extent to which an employee puts discretionary effort into his or her work, beyond the
required minimum to get the job done, in the form of extra time, brainpower or energy.”
Perhaps most relevant in the context of software developers, Hertel et al.’s study of
Linux developers (Hertel et al., 2003, p. 1168-9) found that open source participants’
engagement could be predicted based on (among others) their identification as a Linux
developer and their motivation to improve their programming skills. From the above,
we identify two key characteristics of engaged developers. First, engaged developers
exhibit a form of self-identification with the community in which they work. Second,
engaged developers seek to improve their skills to help do their job. Thus, we propose
the following definition of an engaged developer:

An engaged developer (a) is part of, and identifies with, the software develop-
ment community they work in, and (b) actively seeks to improve their software
development skills.

This definition is consistent with other characteristics typically used in the context
of engagement. For example, França et al. (2020) have used terms such as “committed,”
“hard-working,” and “has an interest” in the work. While each of these terms (committed,
hard-working, having an interest) represents a separate and distinct concept, we argue
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that they are closely related to what we define as engagement, and indeed, are likely
to correlate highly. Advancing one’s professional software development skills aligns
with what Kahn (1990) referred to as people’s expression at a cognitive level in their
work; that is, “task behaviors that promote connections to work,” which we interpret
as developers advancing their professional development skills. Seeing oneself as a
member of a developer community aligns with what Kahn (1990) described as a person’s
emotional expression; at this level, we can think of behavior that promotes connections
to other people—which we link to being part of a group.

In defining developer engagement, it is worth considering what developer disengage-
ment means. After all, this study seeks to measure developer engagement, and so it is
expected that some respondents score low on this attribute. Following Kahn (1990, p.
694), who discussed personal disengagement at work, disengaged developers “uncouple
themselves from work roles” and “withdraw and defend themselves.” In other words,
they are unlikely to see themselves as part of a developer community (withdrawal) or to
invest in their professional skills (uncoupling from work).

It is worth noting that there is a considerable literature that seeks to define employee
engagement (Macey and Schneider, 2008), and we acknowledge that different defini-
tions present different conceptualizations of the term. As we mentioned, some existing
definitions or descriptions include concepts such as job satisfaction and motivation. We
sought to offer a definition that has face validity, is practical, relevant specifically to
software developers (rather than a generic ‘employee’), and measurable in a quantitative
study. Finally, while we argue that our definition is a useful one for the purpose of this
study, this does not imply that other definitions are not also possible. As is common in
the scientific enterprise, different definitions (whether consistent with one another or
competing) of terms are possible, and our proposed definition should not preclude other
scholars to propose alternatives.

3 Theory Development

To guide and focus our study we develop a theoretical model. We build our model drawing
on several established theories and salient themes from prior work on gamification in
software engineering.

3.1 Self-Improvement and Participation in Gamified Tasks

Our first question focuses on why developers might participate; what is their motivation to
partake in a gamification platform? Numerous theories of motivation exist and developer
motivation is a well-studied area within the SE literature (Beecham et al., 2008; França
et al., 2020); Rapp et al. (2019) lamented a lack of theoretical diversity in the gamification
literature, noting that self-determination theory (SDT) is referred to most frequently.
SDT suggests that people have certain psychological needs that need to be satisfied
that drive motivation, specifically, autonomy, competence, and relatedness. While these
three factors of SDT offer a comprehensive view to explain motivation, in this study we
seek to focus specifically on the question what might draw developers to a gamification
platform. Thus, we take a pragmatist approach in selecting an alternative motivational
theory that helps us understand why developers do what they do, namely, Personal
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Investment (PI) theory (Braskamp, 2009). PI theory suggests that “people invest in
themselves in certain activities depending on the meaning these activities have for them”
(Maehr and Braskamp, 1986, p. 62); one important factor that explains behavior is
personal goals (Braskamp, 2009). Prior research suggested that developers are more
motivated when they have a desire to learn new skills (Beecham et al., 2008). Dubois
and Tamburrelli (2013) also suggested that gamification may motivate developers to
learn new technologies. Given the fast pace of technological advances in the software
sector, it is important that developers remain pro-active, for example by learning new
skills and technologies. Gamified software development challenges offer a compelling
mechanisms for developers to both contribute to productivity and performance, and to
learn new technologies. Hence, we propose the following hypothesis:

Hypothesis 1 (H1). Developers’ desire to learn new skills and languages is positively
associated with participation in gamification challenges.

A corollary of Hypothesis 1 is that the level of expertise that developers exhibit is
likely to curb the inclination to participate in gamified challenges. Hence, we propose
that Expertise has a negative moderating influence on H1:

Hypothesis 2 (H2). Developers’ level of expertise negatively moderates the association
between desire to learn and participation in gamification challenges.

3.2 The Role of Participation in Developer Engagement

Scholars have suggested that gamification can lead to more developer engagement (Her-
ranz et al., 2015; García et al., 2017; Sukale and Pfaff, 2014). As discussed above, we
defined developer engagement as a two-dimensional concept, namely, active participa-
tion and identification with a developer community, and the pro-active advancement
of professional development skills. França et al. (2020) suggested that learning new
technologies is a driver of developer engagement. Further, a range of factors were found
to be facilitators of developer engagement, including working on challenging tasks, work
variety, and learning opportunities (França et al., 2020). Several other studies found
support for the link between participation in a gamified setting and engagement (Hamari
et al., 2014). Further, several studies found that gamification helped to increase student
engagement in a classroom setting (Cheong et al., 2013; Welbers et al., 2019). Other
studies found increased levels of user engagement when gamification was used to learn
complex software programs, such as AutoCAD (Li et al., 2012a) and Adobe Photoshop
(Dong et al., 2012).

Overall, prior studies suggest that gamification leads to higher levels of engagement,
though the engagement concept has been measured in different ways for different types
of participants (users, students). To test whether gamification is linked to a higher level
of developer engagement, we propose the following hypothesis:

Hypothesis 3 (H3). Participation in gamification challenges is positively associated with
developer engagement.
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Developer Engagement

Challenge 
Participation

Control Variables:
Age, Sex, Tenure

Identification 
with Community

Human Capital 
Development 

Desire to learn

Developer 
Expertise 

Job Satisfaction
H1:+

H2:-

H3:+ H4:+

H5:+
(mediation)

Data from 
GitLab 

repository

Data from 
developer 

survey

Data sources

Fig. 1. Research model of this study. Developer Engagement is a second-order construct.

3.3 The Role of Developer Engagement in Job Satisfaction

Developers who are more engaged in their daily job are more likely to invest a sense of
their self into the job; they want to succeed in their job, and they want others to succeed
as well (Aurum et al., 2008), as they are more than likely dependent on them (Strode,
2016).

Job satisfaction of software developers has received considerable attention in recent
years (França et al., 2020; Sharma and Stol, 2020; Lenberg et al., 2015). Evidence from
psychology literature suggests a positive link between different forms of ‘engagement’
and job satisfaction, including work engagement (Karanika-Murray et al., 2015), organi-
zation engagement, and employee engagement (Saks, 2006). As we defined developer
engagement as a distinct concept, an open question is therefore whether this, too, is
an antecedent of job satisfaction. Hence, we propose that developers who are more
“engaged” in their work exhibit a higher level of job satisfaction:

Hypothesis 4 (H4). Developer engagement is positively associated with job satisfaction.

3.4 The Mediating Role of Developer Engagement

The previous hypotheses have focused on the specific links between participation, engage-
ment, and job satisfaction. While studying these individual links is insightful, ultimately
we are seeking to identify mechanisms that lead to positive attitudes and behavior. We
argue that developer engagement is such a mechanism that explains the link between
participation and job satisfaction. It is not the participation itself that leads directly to job
satisfaction, but rather through developer engagement. Developer engagement is thus a
mediating factor in the relationship between gamification participation on the one hand,
and job satisfaction on the other. It is our proposition that developer engagement is a
central mechanism that “translates” participation into positive outcomes that software
development organizations should strive to achieve. Hence, our last hypothesis is:

Hypothesis 5 (H5). Developer engagement mediates the association between participa-
tion in gamification challenges and job satisfaction.
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4 Research Method

In order to evaluate the theoretical model, we conducted a firm-level sample study to
collect data that were subsequently analyzed using structural equation modeling. As
discussed in Sec. 2, gamification refers to a broad category of activities and mechanisms
to mobilize people. Gamification in software development settings is therefore likely to
vary considerably across organizations. Because the mechanisms and operationalization
of gamification may be different in each setting, conducting sample studies across
different organizations is challenging as comparisons can be difficult to perform. Hence,
we conducted a sample study at one organization that sought to increase collaboration
across departments and teams. As such, this study’s research strategy is a hybrid between
a field study conducted in a specific natural setting (seeking to capture rich details of a
specific context), and a sample study (seeking generalizability to a population) (Stol and
Fitzgerald, 2018). While it achieves a level of generalizability, it is limited to the context
of the specific field setting. On the other side, while generalizability is limited, it offers
more contextual details than would otherwise be available in a cross-sectional survey.

4.1 Background of the Research Setting

We conducted the study at XCorp (a pseudonym). In order to protect the identity of the
organization, we do not report its geographic location. XCorp is a large organization
with a developer workforce of approximately 850 fulltime staff distributed across several
cities (within a single country). XCorp creates software solutions for the defense sector.

In Fall 2017, XCorp had started an inner source initiative (Cooper and Stol, 2018) in
order to encourage more cross-team collaboration, increase software reuse and reduce
code duplication, and to offer more attractive opportunities for its staff to learn new
technologies. Inner source seeks to adopt open source principles in software development
within organizations. However, after opening up the version control system to allow
developers from different teams to collaborate and share code, very little collaboration
happened for several months. To understand why, the company started to identify several
reasons for this. They (informally) identified several developer ‘profiles.’ A first category
of developers were topic experts, and were looking for opportunities to ‘shine’ by
demonstrating their skills to others. Others were ‘code junkies’ who were looking for
opportunities to evolve professionally. Others still were ‘code ninjas’; these developers
were continuously looking for new opportunities to learn new technologies, and would
typically stay with the company for only a few years. Some of the more senior developers
were not particularly keen to change the type of work they were doing, though they did
express a mild interest in learning new technologies, preferably in a ‘safe’ environment
so they could experiment with these that would not be scrutinized too closely by their
colleagues. Other profiles included ‘lone horses’ who were looking for opportunities to
collaborate, ‘newbies’ who were looking for mentorship and a way to orient themselves,
and networkers who were looking for opportunities to connect to others. A final category
of developers were the socially ‘shy,’ who sought a way to connect informally; the
weekly challenges would give them a topic to discuss that was interesting and relevant to
them.

To help change developers’ behavior, XCorp created a gamification platform, called
“The Guild” (a pseudonym), to create an internal developer community and ecosystem.
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Fig. 2. Screenshot of the gamification platform

The gamification platform has a playful and attractive user interface created by a pro-
fessional graphics designer (see Fig. 2). The playful design was a deliberate decision to
signal that this system was like no other in the organization. XCorp has had a very strong
and traditional engineering approach with considerable regulations (due to the defense
domain it operates in), and all other corporate systems exhibited a typical dull design.
The interface depicts “floating islands” that represent the various levels; each new person
starts as an ‘Applicant.’ In order to be accepted to the guild, a developer would have to be
nominated by an existing guild member within the platform. As developers completed
more challenges and tasks, they could progress to a higher level, ultimately to the highest
levels of ‘Master’ and ‘Grandmaster.’ The islands are inhabited by cartoon-style monsters
(see Fig. 3). Developers can earn stickers depicting these monsters when they complete
certain tasks on the platform—these stickers soon became rather popular. The first tasks
are rather easy to complete (e.g., update one’s profile, create or clone a repository), but
as developers progress, it becomes harder to earn the stickers. The stickers are much
sought after, as developers (and managers) decorate their laptop computers with them,
showing off to others how active they are. Other markers of activity include points and
badges.

In addition to development tasks, the platform hosts weekly interactive “challenges”
to prompt developers to participate. When solved, developers earn another sticker.
Challenges are created by senior community members and vary in level of complexity.
The challenges are not directly related to any product deliverable; instead, they are
designed specifically to attract developers to participate and encourage them to become
members of the internal community. A typical example of such a challenge was around
the introduction of SonarQube. While there was initially little interest from developers
to invest time to learn SonarQube, when a challenge was created to answer specific
questions about this package, developers started to participate in these challenges. These
challenges thus prompted developers to invest time and learn new technologies and
skills.

From time to time, there is an “Adopt a Monster” campaign, where members have to
complete tasks to qualify as adopting ‘parent.’ Member adoption status is only visible in
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Fig. 3. Two monsters from XCorp’s gamification platform

the game. The winner is selected through a lottery system, who may choose the monster’s
name, personality, and select an avatar representing the monster, which would live in the
guild gamification platform. As these adoption opportunities are not frequent, there is
considerable competition for this.

Further, physical in-person technology meet-ups are organized to discuss new tech-
nologies and challenges. These meet-ups are only accessible to members of the guild
community, and so these meet-ups serve as an additional motivation to become active.
Friends and colleagues from other companies may be invited on occasion as well. The
platform also has a chatroom, for which developers can choose to create an account. The
organization adopted a private installation of the GitLab version control system. Any
activity in relation to the gamification challenges is linked to the GitLab installation.

Challenge meetings are organized in an ad-hoc fashion, when a specific need arises
for a specific group within the organization. For example, one group sought to recruit
moderators to their repositories by hosting a workshop of contributions, with at least
one representative of each of their customer software groups. Another software team
organized a challenge meeting to assist in their shift to the Git version control system.
A one-day “elevator challenge” was organized. Participants could submit new elevator
algorithms to compete against the elevator algorithm currently in use on the premises
of XCorp—this was jokingly referred to as the least efficient elevator algorithm in the
universe, reflecting the frustration of developers within the multi-storey building. To
participate, developers had to learn and perform many common Git commands so as
to become familiar with this system, including cloning the base repository, forking
repositories, creating pull requests, and so on.

4.2 Research Design

To test the theoretical model in Fig. 1 we use structural equation modeling (SEM). The
hypotheses in our theoretical model in Fig. 1 rely on various theoretical constructs. These
constructs, such as ‘expertise’ and ‘job satisfaction’ are not easily or reliably observed
directly, but rather constitute latent variables. Latent variables are those that cannot
be directly observed, but are measured through indicators that are directly observable.
A latent variable is a hypothesized construct that a researcher believes to exist; to
measure a change in a latent variable, we measure a change in a set of observable
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variables (i.e., indicators) that we believe to be caused by the underlying latent variable.1

For example, Longo and Mura (2011) measured the construct job satisfaction by the
following indicators:

– “I am satisfied with my promotion opportunities”
– “I am satisfied with the recognition I receive for a job well done”
– “I am satisfied with the amount of say I have in how my work is done” and
– “I am satisfied with my job.”

These indicators, phrased here as statements, can be measured on a Likert scale.
Rather than relying on a single indicator to measure job satisfaction, using multiple

indicators allows us to more reliably measure this construct. The common factor is ‘job
satisfaction,’ and the part of an indicator that is not associated with the common factor
is considered measurement error (Rigdon et al., 2017). In this case, we argue that job
satisfaction comprises several facets, such as promotion opportunities and receiving
recognition for a job well done. In this case, job satisfaction is modeled as a reflective
construct: a change in the value of the theoretical construct job satisfaction causes a
change in the indicators. This is conceptually shown in Fig. 4.

Construct 
Domain

Job 
Satisfaction

I am satisfied with my 
promotion opportunities

I am satisfied with the 
recognition I receive for a 
job well done

I am satisfied with my job

Fig. 4. Left: the reflective latent variable exists where the three indicators overlap; variance that is not caused
by the latent variable is measurement error. Right: measurement of a reflective theoretical construct with
multiple indicators (Adapted from Hair et al. (2016))

To assess whether the different items are consistent—that is, they change in consistent
ways as the value of the latent variable changes—it is common practice to calculate
Cronbach’s Alpha. In exploratory research that relies on new measurement instruments,
values between 0.6 and 0.7 are deemed acceptable; for more mature instruments, values
over 0.7 are typically expected (Hair, Jr. et al., 2013). Values over 0.95 indicate that the
indicators might be too similar, indicating redundancy, and thus such values are less
desirable.

The part of the model that represents the definition of the latent variables as sets
of indicators is called the measurement model. The part of the model that represents

1 This is the case for reflective constructs: a change in the construct is reflected in its indicators. Constructs to
study human behavior or personal attributes tend to be reflective. Constructs can also be modeled as formative
latent variables, whereby a construct is hypothesized to be caused by a set of indicators. For example, to
measure drunkenness without special instrumentation, one could count the number of pints of beer, glasses
of wine and shots of spirits. Together, their intake causes drunkenness, not the other way around. Modeling
formative constructs is, however, not without considerable problems, the primary issue being the ability to
identify (i.e. estimate parameters for) a model; we refer interested readers to Bollen (2011)’s treatment of this
topic.
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the relationships between the latent variables is called the structural model. Structural
equation modeling software calculates the whole model at the same time.2 The next
section discusses how each of the theoretical constructs was measured for this study.

4.3 Measurement Instruments

We used measurement instruments from prior literature where possible. Together, the
measurement instruments are called the measurement model of the structural equation
model. These manifest variables came from two separate data sources. The first three
constructs (Desire to learn, Expertise, Gamification Participation) were measured using
data from XCorp’s GitLab installation. Data for the remaining constructs were collected
through a developer survey which relied on developers self-reporting on a series of state-
ments that were answered with 7-point Likert scales (1=Strongly disagree, 7=Strongly
agree). These two datasets were subsequently joined using respondents’ GitLab identi-
fiers (also collected as part of the developer survey) into a single database. Below we
describe the items (observed variables) that comprised the various constructs, and we
report the Cronbach alpha values as a measure of internal consistency.

Desire to learn. To measure Desire to Learn, we used data from the GitLab repository.
All employees can report in their GitLab profile the languages and skills that they would
like to learn. We counted the number of languages and skills, and so the construct Desire
to Learn is defined as a two-item construct, namely (1) the number of languages the
person would like to learn, and (2) the number of skills the person would like to learn (α
= 0.83). Relying on this profile data from the GitLab installation means that it is more
likely that this information is complete: it is very unlikely that survey participants would
have made an effort to list all skills and languages they would like to learn, as this can be
time consuming. Further, because this information comes from developer profile pages,
we consider these sincere expressions of what developers seek to learn, and thus that
these profile pages are a reliable source of information.

Expertise. We defined expertise as a two-item construct similar to Desire to Learn,
but instead of relying on the languages and skills that a person would like to learn, we
relied on (1) the number of languages and (2) the number of skills that person had listed
(in their GitLab profile) as having knowledge of (α = 0.74).

Gamification Participation. Participation in the gamification was operationalized
with three indicators. First, the number of challenges that the person has solved. While
this is clearly a good indicator of participation, not all participants in a challenge would
have necessarily solved the challenge, and so we selected additional indicators. The
second indicator is the number of challenge meetings that the developer has attended.
Such meetings facilitate discussion with others, for example, and attending is therefore
an ‘indicator’ of participation. The third indicator is a binary variable indicating whether
a developer has a chatroom handle; developers who have a chatroom handle may interact
with others to discuss challenges. Given that the three items have very different scales, we
calculated the standardized Cronbach’s alpha which relies on the correlations instead of
covariances between items (Furr and Bacharach, 2008, p. 117), resulting in a Cronbach
α of 0.81.

2 This is one of the key differences with PLS-SEM, which calculates the ‘scores’ of latent variables based
on their indicators first, before the structural model is calculated.
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Developer Engagement. Our theoretical model focuses on the concept of developer
engagement (Sec. 2). Bollen (2011, p.360) pointed out that the meaning of concepts
are captured in theoretical definitions, and that, “the theoretical definition should make
clear the number of dimensions in a concept. Each dimension is represented by a single
latent variable in a SEM.” Our definition of developer engagement clearly delineates two
dimensions: identification with the internal developer community, and human capital
development. Hence, we operationalized developer engagement as second-order latent
variable that consists of these two latent variables (no Cronbach α is calculated for
second-order constructs). We discuss these two latent variables below.

Identification with the Community. Identification with the Community (ID)
refers to the degree to which a developer identifies themselves with the community—
participating in any community typically leads to a person seeing themselves as part
of that community, and as such, such a person engages with the community through
interacting and potentially helping others. We used two items from Chiu et al. (2006)’s
instrument to measure ID (α = 0.88). Items included “I feel a sense of belonging towards
the Guild community” and “I am proud to be a member of the Guild community.”

Human Capital Development. Human capital (HC) refers to a more personal at-
tribute, namely the extent to which a developer focuses on developing their professional
skills. Again, this reflects the level of engagement that the developer has with the job at
hand, and to improve one’s skills. We adopted a three-item instrument to measure Human
Capital Development (α = 0.94). Items included “Participation in the Guild improves my
software development performance,” “Participation in the Guild community helps my
professional growth by developing my skills and learning new technologies, tools, and
practices,” and “Participation in the Guild community advances my skills in developing
software.”

Job Satisfaction. We adopted a four-item instrument from Longo and Mura (2011);
items included: “I am satisfied with my promotion opportunities,” “I am satisfied with
the recognition I receive for a job well done,” “I am satisfied with the amount of say I
have in how my work is done,” and “I am satisfied with my job.” However, given the
poor result of reliability measures, we removed item 3, leaving a three-item instrument
(α = 0.80). Upon closer inspection, item 3 seems to capture an aspect that is categorically
different from the others, in that it relates to how work is done, whereas the other items
reflect on promotion, recognition, and a holistic view of the job itself.

Control variables. We included three control variables in the model: age, measured
in years; tenure, measured in years, and sex, recorded as a binary variable (male=1,
female=0). As mentioned, XCorp operates in the defense sector which is a more conser-
vative context, where all employees are vetted and hold the highest security clearance.
Unfortunately, this also means that the population is likely to be less diverse (mostly
men, with a small proportion of women), and where people may be less likely to report
if they identify otherwise.

4.4 Data Collection and Analysis

Data were collected from two separate sources. We first collected data through an internal
online survey, facilitating self-reported data. The survey was sent to all developers; in
order to encourage participation, we committed to make a donation of approximately
US $2.00 per response to a charity that was local to XCorp. As part of the questionnaire,
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we asked respondents to report their internal GitLab user identifier. In so doing, we
assured respondents that data would be treated in strictest confidence. We received 155
usable responses (a response rate of approx. 18%). Using the GitLab user identifier, we
collected data from the internal GitLab system for behavioral data, that is, data reflecting
respondents’ actual activity and goals (such as skills and languages a developer would
like to learn). Table 2 reports descriptive statistics of the sample.

As briefly noted, we used structural equation modeling (SEM). SEM represents a
family of second-generation statistical approaches; so-called first-generation methods
include ANOVA and multiple regression, which typically rely on ordinary least squares
(OLS) estimation. SEM offers a number of benefits over traditional regression analysis
methods commonly used in SE research. Traditional multiple regression allows for only
a single outcome variable, whereas SEM allows for any number of outcome variables.
Traditional regression does not allow modeling of indirect (or mediating) effects. Further,
traditional multiple regression does not support the use of latent variables—that is, only
directly observed data can be used, which are assumed to be without measurement error.
Many constructs of interest in SE research, however, cannot be directly observed, such
as trust. SEM allows measurement of such latent constructs by means of measurement
instruments, which can account for measurement error (see Sec. 4.2).

SEM is extensively used in other research fields, including Information Systems,
Marketing, and Management, but rarely in software engineering research. Notable
exceptions are Capra et al. (2008)’s study of software quality and governance in open
source projects, Lindsjørn et al. (2016)’s study of teamwork quality and project success,
and more recently Ralph et al. (2020)’s study of the impact of the COVID-19 pandemic
on software developers’ wellbeing.

One of the benefits of SEM over first-generation methods is that SEM allows the
inclusion of latent variables as opposed to only directly observable variables. As attention
for human factors and behavior in software engineering is increasing, the use of SEM is
highly suitable in order to analyze variables such as trust and job satisfaction (Lenberg
et al., 2015; Graziotin et al., 2020). This study therefore makes a methodological contri-
bution to the limited few studies employing SEM by demonstrating its use in a software
engineering context.

In this study we rely on covariance-based SEM (CB-SEM), as opposed to Partial-
Least Squares SEM (PLS-SEM) which is used more commonly in studies published
in SE venues (Russo and Stol, 2021). The two approaches to SEM rely on a different
computation model and assumptions (Rigdon et al., 2017). In the remainder of this paper,
we use the term SEM to mean CB-SEM. A novel aspect of our study in comparison
to prior SEM studies in SE is the use of two separate data sources for some of the
predictor and criterion variables. Most SEM studies rely on a single data source, typically
a respondent survey. This could lead to common method variance, which refers to

Table 2 Age, tenure, sex of respondents

Variable Min. Mean Max. SD Count (%)

Age (years) 25 38.5 63 8.3
Tenure (years) 0.3 7.6 35 6.2
Male 112 (72.3%)
Female 43 (27.7%)
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an artificial covariance between variables due to the use of the same (common) data
collection—Podsakoff et al. (2003) presents an extensive overview of this phenomenon.
The use of separate data sources is a key strategy to prevent this issue. Section 4.7
discusses this issue in more detail.

We used the Lavaan library for R (v. 0.6-9) to evaluate the structural equation model,
within RStudio (RStudio Team, 2020) (v. 1.2.5042) and R (v. 3.6.2). Lavaan is a mature
open source library that is actively being developed and supported (Rosseel, 2012). A
replication package is available on the Zenodo platform (https://doi.org/10.
5281/zenodo.5549698).

Most SEM analysis software packages, including Lavaan, do not have native support
for moderation analysis with latent variables (though it does support moderation with
observed variables). For that reason, we evaluated Hypothesis 2 in a separate Lavaan
model using factor scores. Factor scores combine all values of a latent variable’s indi-
cators into a single value; hence, the score represents the factor as a whole. One could
potentially run the complete model with factor scores, reducing the structural equation
model to a path model. However, doing so would ignore any measurement error, which
is unrealistic and would bias the parameter estimates.

4.5 Model Fit Evaluation

SEM does not only evaluate the significance and strength of individual relationships
between two variables, but rather has a more holistic focus on the overall fit of the model.
A first step in SEM is to evaluate the measurement model; that is, to establish the validity
of the measurement of the latent variables (the constructs) by means of the various
indicators. Section 4.6 presents details on the measurement model. Part of the analysis
in SEM includes an assessment of the model fit, which we discuss in this section.

Model fit in traditional regression models is assessed by examining the explained
variance (R2) in the dependent variable. A researcher using traditional regression seeks
to assess the extent to which variables can explain a dependent (outcome) variable. This
search for maximizing the explained variance is also a focus in PLS-SEM (Hair et al.,
2016; Reinartz et al., 2009). However, this is not the goal in CB-SEM, which seeks
to establish whether a proposed theoretical model is supported by the data. While an
assessment of the explained variance is still of interest, it has no role in assessing model
fit. As Kline (2016, p. 264) pointed out, “overall model fit and R2 for individual outcomes
are basically independent. For example, disturbances in structural models with perfect
fit can still be large (i.e., R2s are low), which means that the model accurately captures
the relative lack of predictive validity in the data.”

Instead of a focus on the explained variance, a covariance-based SEM model is
evaluated by assessing the extent to which the proposed theoretical model ‘fits’ the data.
If the model fit is poor, then it should be discarded: a well-fitting model is required in
order to be able to interpret the estimated parameters of the model. Since CB-SEM is
not commonly used in software engineering studies, we briefly discuss model evaluation
next.

Structural equation models are represented by a set of matrices. The theoretical model
is transformed into a model-implied variance-covariance matrix: it captures the variances
and covariances that are encoded in the model. The input data are also transformed
into a variance-covariance matrix; this is the input or analyzed variance-covariance

https://doi.org/10.5281/zenodo.5549698
https://doi.org/10.5281/zenodo.5549698
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matrix. A SEM software package tests the null hypothesis that the model-implied and
input variance-covariance matrices are statistically the same (i.e., good model fit). The
discrepancy between the two is minimized using an estimator (discussed below), and
generates a test statistic that follows a X2 distribution. The first test is thus whether the
X2 statistic is significant or not, whereby the desired result is a nonsignificant X2. That is,
a researcher operating within a SEM framework seeks support for the null hypothesis,
namely, that the data are consistent with the theoretical model.

The difference between the model-implied and input matrices is minimized by an
estimator. Several estimators are available in most SEM packages, and the normal
theory-based Maximum Likelihood is the default. There is a considerable stream of
methodological research into the performance of estimators under varying circumstances.
The standard ML estimator assumes multivariate normality of the endogenous variables
(Finney and DiStefano, 2012; Kline, 2016)(Kline, 2012, p. 122); as some of our data
were not normally distributed, we used MLM, which is a robust variant of the standard
ML estimator that does not rely on the assumption of normality (Gana and Broc, 2019;
Savalei, 2018).3

In most models, the X2 test will yield a significant result; that is, the model-implied
matrix and input matrix will differ in a statistically significant way, not least because
calculation also depends on the sample size. While this is a subject of some heated
debates even today, most scholars accept models that have a significant X2. Other,
alternative ‘global’ measures of fit have been proposed, the most common of which
are briefly discussed below (cf. Bagozzi and Dholakia (2006); Schumacker and Lomax
(2016); Kline (2016); Hu and Bentler (1999)) and summarized in Table 3. These fit
indices are called global because they assess the fit of the complete model, including
measurement and structural model (Williams and O’Boyle Jr, 2011).

The Root Mean Square Error of Approximation (RMSEA) is a measure of how well
the theoretical model fits the data. Values of up to 0.05 indicate a good fit, whereas values
between 0.05-0.08 indicate an acceptable fit. SEM software packages also report a 90%
confidence interval (CI) for the RMSEA; the upper limit of the CI should be smaller than
0.10 (Loehlin and Beaujean, 2017). Further, SEM packages also report the probability
that the RMSEA value is below .05; sometimes this is referred to as the p of Close Fit, or
PCLOSE (e.g. in SPSS Amos). A nonsignificant p of Close Fit indicates good fit (Kline,
2016); however, this test often yields a significant result as it relies on the sample size,
and so even the smallest ‘misspecification’ is magnified by a large sample size. Most
researchers in the social sciences accept a significant p of Close Fit.

Two other fit measures are the Comparative Fit Index (CFI) and the Tucker-Lewis
Index (TLI). Desired values for both these indices are 0.95 or higher, though values
slightly lower would not necessary disqualify the model. The Standardized Root Mean
square Residual (SRMR) has a preferred cut-off value of 0.08, with smaller values
indicating better fit. The ratio of the X2 and the model’s degrees of freedom (df) is
another frequently used measure of fit, though its use has been critiqued. In practice, it is
a useful approximate indicator of model fit, though it should not be relied on exclusively.
The most stringent rule of thumb suggests values smaller than two suggest a good fit
(Tabachnick and Fidell, 2013, p. 720).

3 We also ran the model with the MLMV estimator, which is similar but incorporates a mean and variance
correction of the calculation of chi-squares (Savalei, 2018). The results were similar and consistent with MLM.
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Table 3 Common fit measures for evaluating structural equation models

Fit measure Desired value

p-value X2 Nonsignificant result (p > 0.05) indicates good fit1 (Kline,
2016).

Root Mean Square Error of Approxi-
mation (RMSEA)

< 0.05 indicates close fit; values 0.05–0.08 indicate good to
acceptable fit (Hu and Bentler, 1999; Schumacker and Lomax,
2016; Kline, 2016).

90% confidence interval RMSEA Upper limit of CI should be < 0.10 (Loehlin and Beaujean,
2017, p. 71)

p-value RMSEA < .05 (p of Close Fit,
PCLOSE)

Nonsignificant result (p > 0.05) indicate that the data fit the
model well (Kline, 2016).1

Comparative Fit Index (CFI) ≥ 0.95 indicates good fit (Hu and Bentler, 1999; Schumacker
and Lomax, 2016)

Tucker-Lewis Index (TLI) ≥ 0.95 indicates good fit (Hu and Bentler, 1999; Schumacker
and Lomax, 2016)

Standardized Root Mean-square Resid-
ual (SRMR)

< 0.05 indicates close fit (Schumacker and Lomax, 2016); <
0.08 indicates good fit (Hu and Bentler, 1999)

X2 / degrees of freedom (df) Ratio of < 2 indicates good fit (Tabachnick and Fidell, 2013)

1 This test fails for many models and is sensitive to sample size. Many SEM researchers agree that failure of
this test does not need to lead to rejection of a model. We report it here for completeness.

The recommended thresholds and cut-off values are rules of thumb and should be
used with care. There is considerable discussion among SEM scholars on the validity
of these fit measures, and on which of these are most important. Nevertheless, the fit
measures reported here are most commonly reported. It is custom to assess a model
by looking at several of these fit measures, and judge a model based on the scores of
the majority of these fit measures. In that sense, the various measures of fit can be
interpreted as ‘indicators’ of the latent construct ‘model fit’ (cf. Fig. 4).4 We accept that
each measure of fit has its weaknesses, but each takes a different approach to measure
(mis)fit. Taken together they can offer some level of confidence in the model, in particular
when they all fall within commonly accepted ranges.

One assumption of using a ML estimator is that the variables are continuous, which
Likert scales are not by definition. However, the use of ML is unproblematic when
applied on Likert-scale variables with a seven-point scale (Rhemtulla et al., 2012; Tarka,
2017); in this study we used a seven-point Likert scale for most of the self-reported data.

4.6 Evaluation of the Measurement Model

We evaluated the measurement model with a confirmatory factor analysis (CFA), whereby
all constructs are correlated to one another. The developer engagement construct was
modeled as a second-level construct, whereby the constituent constructs ID and HC are
modeled as “indicators,” and not correlated to other constructs in the CFA. The standard-

4 Kenneth Bollen, a SEM expert, made this observation verbally several years ago; confirmed in personal
communication July 2021.
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ized loadings of ID and HC onto developer engagement were above the recommended
minimum of 0.6 (Schumacker and Lomax, 2016), namely 0.91 and 0.75, respectively.

The CFA results exhibited a very good fit (p-value X2 = .06, RMSEA = 0.04 (CI
0.01–0.06), p-value RMSEA < .05 = 0.74, CFI = 0.98, TLI = 0.97, SRMR = 0.05, X2 =
98.4, df = 78, and X2/df = 1.3).

Table 4 Confirmatory factor analysis: factor loadings. DE1 and DE2 refer to ID and HC, respectively,
as items of the second order construct Developer Engagement. HC=Human Capital, JS=Job Satisfaction,
GP=Gamification Participation, ID=Identification with Community, DL=Desire to Learn, EX=Developer
Expertise, DE=Developer Engagement

Item HC JS GP ID DL EX DE

HC1 0.91
HC2 0.92
HC3 0.93
JS1 0.80
JS2 0.71
JS4 0.76
GP1 0.72
GP2 0.71
GP3 0.85
ID1 0.84
ID2 0.93
DL1 0.93
DL2 0.79
EX1 0.68
EX2 0.92
DE1 (ID) 0.90
DE2 (HC) 0.76

4.6.1 Convergent Validity

Convergent validity refers to how well the indicators of a given construct belong
together—i.e., how well they converge in their measurement of the construct. A common
measure to assess convergent validity is the Average Variance Extracted (AVE), which
should be at least 0.5 (Fornell and Larcker, 1981). As Table 5 indicates, the lowest AVE
value in our study was 0.58. A second approach to assess convergent validity is to inspect
the loadings of the items onto their respective constructs (see Table 4). A common rule
of thumb is that standardized loadings be at least 0.5, or preferably 0.7 (Hair, Jr. et al.,
2013, p. 617); the lowest loading in our model was 0.68. Other loadings varied from 0.71
to 0.93. We conclude that there were no threats to convergent validity.

4.6.2 Discriminant Validity

Discriminant validity refers to the extent to which the various constructs measure distinct
concepts. We assessed this using two procedures.

First, we assessed the Fornell-Larcker criterion (Fornell and Larcker, 1981), which
requires that all square root values of the AVEs exceed the correlations between the
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Table 5 Average Variance Extracted (AVE) and correlations among the constructs and square roots of the
AVE values (in boldface on diagonal)

Construct AVE 1 2 3 4 5

1. Desire to learn 0.72 0.85
2. Expertise 0.58 0.64 0.76
3. Participation 0.72 0.76 0.41 0.85
4. Developer engagement 0.69 0.31 0.28 0.45 0.83
5. Job satisfaction 0.58 0.08 0.06 0.00 0.25 0.76

Table 6 Heterotrait Monotrait (HTMT) ratios of first-order constructs

Construct 1 2 3 4 5

1. Desire to learn
2. Expertise 0.64
3. Participation 0.73 0.46
4. Identification 0.30 0.29 0.44
5. Human capital 0.18 0.18 0.32 0.69
6. Job satisfaction 0.09 0.09 0.07 0.17 0.27

constructs. Table 5 confirms that this was the case.5 Second, we considered the Hetero-
Trait Mono-Trait (HTMT) ratios (Henseler et al., 2015) (see Table 6). The HTMT ratios
are calculated only for the first-order constructs, and not for the second-order construct
(Sarstedt et al., 2019, p. 203). A liberal cut-off value of the HTMT ratios is 0.9, beyond
which discriminant validity could be problematic; a more conservative cut-off value is
0.85 (Henseler et al., 2015). The highest HTMT ratio in our study was 0.73, well below
the conservative cut-off. Based on these results, we conclude that there were no threats
to discriminant validity.

4.7 Common Method Variance

Common method variance (CMV) (also referred to as common method bias) refers to
variance that is attributable to the measurement method (Podsakoff et al., 2003). That
is, the mere use of the same method to collect data representing predictor and criterion
variables can lead to artifactual covariance between these variables; Podsakoff et al.
discuss a wide range of potential sources of CMV (Podsakoff et al., 2003). We have
included a procedural remedy to control for CMV, by drawing on two separate data
sources: Desire to Learn, Expertise, and Gamification Participation were measured using
data from the company’s private GitLab installation, whereas all other constructs were
measured using the survey instrument. Using separate data sources is the “gold standard”
to address CMV (Jordan and Troth, 2020). Nevertheless, given that our theoretical model
includes a mediator, which serves as both an exogenous and endogenous variable, we
also conducted Harman’s single-factor test. Using this procedure, all variables in the
study (from the same source) are loaded onto a single factor in an exploratory factor
analysis, relying on an unrotated factor solution (Podsakoff et al., 2003, p. 889). CMV
may be present if a single factor emerges, or the first factor accounts for the majority of

5 To be precise, the square root of the AVE of Developer Expertise was 0.764, and the correlation between
Participation and Desire to learn was 0.762; both rounded down to 0.76.



24 Empirical Software Engineering

.99
Challenge 

participation
Desire to 

learn

Expertise

Developer 
engagement

Identification 
with 

community

Human 
capital 

development

Job 
satisfaction

DL1

DL2

EX1 EX2

ID1 ID2 HC1 HC2 HC3

JS2

JS4

JS1

GP2 GP3GP1

.74

Tenure SexAge.68 .92

.76.86

.92.94

.72
.72

.84

.84

.71

.76

.92
.93

-.13

.79.04

-.18

.36
.09

-.07

.19

.07

-.24

.72

-.34

.50 .36

-.17

Fig. 5. Results of the structural equation model. Dotted lines indicate non-significant results. All estimates are
standardized. Loadings of Expertise taken from the CFA. Moderation analysis performed using factor scores
in a separate model.

the variance. The first factor in our results accounted for 29.3%, which is well below the
cut-off of 50%. This, plus the procedural strategy of collecting data from two different
data sources suggest that CMV was not a concern in this study.

5 Results and Discussion

We now present the results of the evaluation of the theoretical model (Sec. 5.1), followed
by a discussion of implications of these findings (Sec. 5.2). Sec. 5.3 discusses the
limitations of this study. Sec. 5.4 concludes with a brief summary.

5.1 Evaluation of the Theoretical Model

This section presents the results of the evaluation of the theoretical model in Fig. 1.
Fig. 5 presents the analysis results. Based on commonly used fit measures for evaluating
structural equation models (Table 3), the model exhibited a very good fit (p-value X2 =
0.02,6 RMSEA = 0.047 (CI 0.021–0.067), p-value RMSEA < .05 = 0.58, CFI = 0.97,
TLI = 0.97, SRMR = 0.06, X2 = 119.3, df = 89, and X2/df = 1.3), which means that overall,
the data support the theoretical model. As emphasized in Sec. 4.5, a good model fit is a
prerequisite in order to be able to interpret the estimated parameters of the model; a poor
model fit essentially renders the model unusable because the parameter estimates cannot
be trusted. Table 7 reports the results of the evaluation, including the unstandardized
coefficients (B), standardized coefficients (B), standard errors, confidence intervals and
p-values.

Hypothesis 1 suggested a positive relationship between a developer’s desire to learn
and participation in the gamification platform; we found strong support for this (B = 0.72,

6 As discussed above, a significant X2 test is not considered an issue.
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p < 0.001). Of the three control variables, only tenure was significant (B = 0.36, p <
0.01), indicating that developers with a longer tenure at the company have a higher level
of participation.

Hypothesis 2 proposed a negative moderating role for a developer’s level of expertise
on the relationship between desire to learn and participation; our analysis demonstrated
that the data support this moderating relationship (B = −0.34, p = 0.00). Figure 6 shows
the Johnson-Neyman plot, which indicates that as developer expertise increases, the slope
of Desire to learn decreases. In other words, the relationship between Desire to learn
(the predictor) and participation (the dependent variable) becomes weaker as developer
expertise is higher. That is, developers with a high level of expertise exhibit a lower
level of participation when their desire to learn is high. Developers with a low level of
expertise exhibit a higher level of participation with the same high desire to learn. Thus,
a higher level of expertise negatively moderates the level of participation. Similar to H1,
only tenure was found to be significant (B = 0.16, p < 0.01).

Hypothesis 3 proposed a positive relationship between participation and developer
engagement. Our analysis revealed the data support this (B = 0.50, p < 0.001). Sex was
found to be significant (B = −0.18, p = 0.04); the negative sign indicates that lower values
for sex (i.e. 0, indicating females) link to a higher level of engagement. In other words,
females exhibited a slightly higher level of engagement. Tenure was also significant (B =
−0.24, p = 0.024); again, the negative sign indicates that developers with shorter tenure
exhibited a higher level of engagement.

Furthermore, Hypothesis 4 proposed a positive relationship between developer en-
gagement and job satisfaction. We found support for this hypothesis as well (B = 0.36, p =
0.02). None of the control variables were significant, but sex was borderline insignificant
(B = 0.19, p = .051).

Hypothesis 5, finally, proposed a mediating role for developer engagement between
participation and job satisfaction. To evaluate a mediation effect, we must consider both
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the direct and indirect paths from participation to the outcome variable, job satisfaction
(Zhao et al., 2010). We first consider the direct path; the direct path from participation
to job satisfaction is not significant (p = 0.14). Next, we consider the indirect path.
The analysis results indicate that the indirect path from participation to job satisfaction,
mediated by developer engagement, is statistically significant (B = 0.18, p = 0.02).
As recommended in the SEM literature (Hayes, 2018), we also evaluated the indirect
effect with a bootstrapping procedure with 2000 samples. This is because the parameter
estimate of an indirect effect is nothing else than a product term, but the distribution of
that product term does not follow the same distribution as the original product factors.
We refer interested readers to Hayes (2018)’s treatment on this topic. The results were
similar and consistent: B = 0.18, p = 0.04.

The result of a mediation analysis can result in no mediation effect, a partial mediation
effect, or a full mediation effect (Zhao et al., 2010). Given that there is no significant
direct effect but a significant indirect effect only, we conclude that developer engagement
fully mediates the relationship between participation and job satisfaction on the other.7

Table 7 Unstandardized (B) and standardized (B) path coefficients, standard errors (SE), confidence
intervals (CI), and p-values

Hypothesis B B SE 95% CI p

H1: Desire to learn→ Gamification participation 3.99 0.72 0.57 (2.85, 5.15) 0.00

Sex 1.45 0.04 2.25 (−2.97, 5.86) 0.52
Age −0.25 −0.13 0.14 (−0.52, 0.03) 0.08
Tenure 0.91 0.36 0.25 (0.41, 1.40) 0.00

H2: Expertise negatively moderates Desire to
learn→ Gamification participation

−0.05 −0.34 0.01 (−0.03, −0.05) 0.00

Sex −0.01 0.00 0.22 (−0.43, 0.41) 0.97
Age −0.02 −0.06 0.01 (−0.04, 0.01) 0.17
Tenure 0.06 0.16 0.02 (0.02, 0.11) <0.01

H3: Gamification participation→ Developer en-
gagement

0.04 0.50 0.01 (0.02, 0.05) 0.00

Sex −0.45 −0.18 0.22 (−0.88, −0.02) 0.04
Age 0.01 0.07 0.01 (−0.02, 0.04) 0.48
Tenure −0.04 −0.24 0.02 (−0.08, −0.01) 0.02

H4: Developer engagement→ Job satisfaction 0.40 0.36 0.17 (0.07, 0.73) 0.02

Sex 0.52 0.19 0.27 (0.00, 1.04) >0.05
Age −0.01 −0.07 0.02 (−0.04, 0.02) 0.52
Tenure 0.02 0.09 0.02 (−0.02, 0.06) 0.32

Mediation Analysis

H5 Direct effects:
Participation→ Job satisfaction −0.01 −0.17 0.01 (−0.03, 0.00) 0.09

H5 Indirect effects:
Participation → Developer engagement → Job

satisfaction
0.01 0.18 0.01 (0.00, 0.03) 0.02

7 If both the direct effect and indirect effect are statistically significant, this is characterized as a partial
mediation. In this case, there is no direct effect, so we speak of ‘full’ mediation.
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Table 8 Variance Explained

Construct R2

Gamification Participation 0.78
Developer Engagement 0.26
Job Satisfaction 0.11

Table 8 lists the R2 values for each of the endogenous variables. The table shows that
the variance explained for job satisfaction is limited at 0.11. The values for gamifica-
tion participation and developer engagement are considerably higher, at 0.78 and 0.26,
respectively. While the R2 values are somewhat informative, we emphasize that these
do not signify model fit in the same way they are interpreted in a multiple regression.
Clearly, other constructs are at play in explaining job satisfaction, which are not included
in our theoretical model because these were not the focus of our study.

5.2 Discussion and Implications

The SE literature features few empirical studies of gamification in industry settings (see
Table 1), and in light of this, the present study makes a number of contributions.

First, we conducted a study of gamification in a large multi-site software development
organization. We describe the dedicated gamification platform designed around ‘exotic’
cartoon-style monsters who inhabit an environment consisting of several islands (see
Fig. 2), and the ‘challenge’ mechanism to attract developers. A playful interface helped
to distinguish the system from other corporate systems that exhibited a more dull
appearance. The system was designed to entice developers to get involved and build a
community, and additional, offline activities such as technology meetups offered tangible
benefits to community members. Our study is different from prior quantitative studies of
gamification in SE in that it offers a larger theoretical framework. We observed that many
prior studies reported inconclusive results. One potential explanation for this is that the
theorized hypotheses in those studies overlooked more complex relationships between
variables. That is, relationships between variables may be more nuanced; mediating
and moderating factors may play a role. Without modeling these, the focus remains on
direct, linear relationships only. As our study bears out, the link between gamification
participation and job satisfaction is mediated by the construct developer engagement.
Thus, we suggest that future quantitative work adopts a more theoretically holistic
approach that explores “how” questions: how do two (or more) variables relate to one
another, and what might underlying mechanisms that link these variables be?

Second, we observed that the term “developer engagement” had not been defined in
the software engineering literature, or beyond, and proposed a definition that is grounded
in, and consistent with prior literature, and is also measurable through an empirical
measurement instrument using latent variables. Other studies can use this definition,
either in its current form (‘as-is’) or as a foundation to extend or adapt; alternatively,
we envisage that other scholars may wish to conceptualize the construct of developer
engagement in a different fashion. We do not argue that our definition represents the
‘final word’ on this; in fact, we encourage and welcome others to offer alternatives and
enrich our understanding of this important concept that has hitherto been used, but not
defined.
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Third, we drew on Personal Investment theory and study a salient reason for why
software developers might participate in a gamification initiative, namely, a desire to
learn new software development skills and technologies (see Beecham et al. (2008)
for example). To the best of our knowledge, this motivation has not been linked to
participation in gamification initiatives in SE (see Table 1); prior studies have focused
primarily on whether gamification works to achieve better quality documentation, code,
and so on. Much of the gamification literature (beyond the software engineering literature)
refers to self-determination theory in seeking why participants participate, and so the
use of an alternative motivational lens contributes to the heterogeneity of theoretical
perspectives that Rapp et al. (2019) have called for. Our findings offer support for the
hypothesis that developers are interested to participate in a gamification platform if this
offers them opportunities to learn new skills and technologies. Organizations that wish
to introduce new tools or technologies could consider using a dedicated gamification
platform to introduce new tools and technologies, for example, to entice developers to
learn a new programming language for use in future projects.

Fourth, we identified a key outcome in the SE literature that is important for software
organizations in general, job satisfaction, and found support for our hypotheses that
(a) participation is positively associated with developer engagement, (b) developer en-
gagement positively associates with job satisfaction, and (c) that developer engagement
mediates the relationship between participation in a gamification platform and job satis-
faction. Further, we found that there is no link between participation and job satisfaction
directly; in other words, participation in gamification challenges does not explain job
satisfaction. Rather, participation induces developer engagement which in turn links to
job satisfaction, thus identifying developer engagement as a theoretical explanation of
how participation “translates” into job satisfaction. However, we note that the effect size
of the mediation is moderate (B = .18) and a low level of explained variance (R2 = .11)
of the job satisfaction construct. This indicates that developer engagement only plays
a limited role in explaining developer job satisfaction. Clearly other factors are at play,
and future work could focus on other factors, besides developer engagement, to explain
developer job satisfaction. While there is considerable qualitative work in this area, we
observe a lack of quantitative study designs that seek to explain job satisfaction.

In addition to the substantive contributions to gamification in a software engineering
context, this article also makes a novel methodological contribution. This article reports
a study using covariance-based structural equation modeling (as opposed to PLS-SEM
which is more commonly used in the SE literature (Russo and Stol, 2021)). CB-SEM
is an analysis approach that is not widely used in the mainstream software engineering
publications (with only a few exceptions (Lindsjørn et al., 2016; Capra et al., 2008;
Ralph et al., 2020)). Our study relies on multiple data sets, combining data from a
developer survey with data recorded in the company’s version control system. Some of
the variables collected from the version control system represents developer behavior,
whereas the developer survey collected developer opinions. Combining different data
sets is the primary strategy to prevent CMV (Podsakoff et al., 2003) (see Sec. 4.7).
Further, this study is the advanced analyses involving a second-level latent variable,
mediation analysis, and moderation analysis. SEM is an important family of techniques
in the emergent behavioral software engineering literature as it relies on psychometric
measures (Lenberg et al., 2015). As mentioned, SEM is not widely used in an SE
context, and to the best of our knowledge, no studies in the SE literature include second-
level constructs, mediation, or moderation analysis. In that context, this study and the
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Table 9 Substantive and methodological contributions and implications

Limitations of prior litera-
ture on gamification in SE

Contributions Lessons and Implications

Few empirical studies of
gamification of software
engineering in industry,
and many quantitative stud-
ies are inconclusive regard-
ing outcomes.

This study adds to the limited gam-
ification in SE literature, describ-
ing a bespoke, attractive, and play-
ful gamification platform through
which tasks and challenges can be
completed. The findings support our
theoretical model.

Other organizations can model a
gamification platform inspired by
the one presented. Integration with
the version control system is impor-
tant to ensure competitions and tasks
are relevant. Offline activities such
as technology meetups offers addi-
tional tangible benefits to commu-
nity members. Further studies can
theorize alternative mediating and
moderating factors; the lack of these
may explain inconclusive results in
several prior studies.

No explicit definition of
“developer engagement” of-
fered that is not conflated
with participation.

This study proposes an explicit def-
inition grounded in and consistent
with prior literature.

The proposed definition can be used
as a foundation for future research,
as-is, as a starting point to extend, or
to offer alternative viewpoints.

Lack of understanding of
what drives software devel-
opers to partake in a gam-
ification platform (beyond
motivational affordances).

This study finds a positive link be-
tween developers’ desire to learn
new skills and technology and par-
ticipation in gamification challenges.
This link is negatively moderated by
their level of expertise.

Gamification of specific tasks can
help to attract software developers;
learning new skills and technologies
is an attractor to get developers inter-
ested. Organizations could consider
the use of a dedicated gamification
platform to introduce new technolo-
gies.

Little research on the bene-
fits of increasing developer
engagement for organiza-
tions.

This study demonstrates a positive
link between gamification partici-
pation and job satisfaction, medi-
ated by developer engagement; how-
ever, low level of explained variance
(R2=.11) and moderate effect size
(B=.18)

Developer engagement is one ‘mech-
anism’ through which developer job
satisfaction can rise. However, offer-
ing gamification challenges should
not be seen as a means to increase
developer job satisfaction.

No prior studies of
gamification in SE used
covariance-based structural
equation modeling

This study demonstrates the use of
CB-SEM on a non-trivial data set
from two separate sources, including
mediation and moderation hypothe-
ses, and the use of a second-level
latent variable.

This paper offers a starting point for
SE researchers who seek to measure
and analyze latent variables and de-
velop new theory using SEM.

replication package with the necessary scripts and instructions to conduct these analysis
may be welcomed by researchers seeking to contribute to the behavioral SE literature
(Lenberg et al., 2015).

5.3 Limitations of this Study

This study has a number of limitations. This study design is not experimental but is a
sample study; therefore, strictly speaking we cannot claim any causality. We cannot with
full certainty establish that, for example, gamification participation causes a higher level
of developer engagement. However, the logic of SEM studies is that the tested theory is
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firmly grounded in prior literature. The purpose of SEM studies is not to establish causal
links, but to confirm a theory from prior literature and propose associations between key
concepts. Before any of the estimated parameters are considered, in SEM studies such as
this it is critical that the ‘fit’ of the model as a whole is considered. Model fit indicators
(see Table 3) assess the degree to which the ‘structure’ of the data matches the structure
implied by the theoretical model. In this study, we have grounded the hypotheses firmly
in prior literature, and so the justification of these hypotheses is a convergent result of
that literature review. While one could potentially link any two concepts and attempt
to establish a statistical significant result, without a firm theoretical foundation, such
findings would bear no value, keeping in mind that analysis results must also have face
validity (Bollen, 2011). It is in this light that the value of this study should be evaluated:
it presents evidence in support of the theoretical model that was carefully composed
based on prior studies and theories. Further, a single study should not be interpreted as
the final word on the topic; it provides a single data point for future meta-analyses and
literature review syntheses which are more suitable to detect patterns of results in which
we can have more confidence.

The data for this study were collected at a single organization. This was necessary
because some of the constructs had unique measurement instruments that would not be
readily applicable to any other organization. The data were thus collected within a specific
firm setting, and within the context of an inner source initiative (Cooper and Stol, 2018).
Hence, the findings of this study are not statistically generalizable to other organizational
settings. However, the findings of this study demonstrate that the proposed theory is
indeed applicable to this one organization, and further, the theoretical model could be
applied to other organizations with similar gamification platforms. Measurement of some
constructs might have to be tailored to other settings. Summarizing, while statistical
generalization is limited, findings of this study can be seen to contribute to theoretical
generalizability.

5.4 Conclusion

Gamification has started to receive increasing attention in the software engineering
literature. Many publications, however, seem to report non-empirical studies that propose
visions of gamified software development (Pedreira et al., 2015; García et al., 2017),
and much of the empirical work is conducted with students, rather than in industry
settings, with some notable exceptions (Herranz et al., 2018; Neto et al., 2018; Marques
et al., 2020; Snipes et al., 2014; Passos et al., 2011). Further, many studies in the soft-
ware engineering domain thus far have reported inconclusive results. We posited that
this might be the case because prior studies have not considered more complex types
of relationships between variables involving mediating and moderating mechanisms.
Gamification has been proposed to increase developer engagement, but no definition
of the term has been proposed. Further, while developer engagement sounds like an
appealing value proposition for software organizations, there are no studies that focus
on the consequences of having engaged developers. Hence, in this study we sought to
address these issues. This paper contributes to the limited body of knowledge on gamifi-
cation in software engineering by reporting a rigorous empirical study of gamification in
one software development organization. We proposed a theoretical model that, amongst
others, posits that developers’ desire to learn new skills and technologies positively
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links to participation in gamification challenges, but that this relationship is moderated
by developer expertise. Further, we posit that the relationship between participation
in gamification challenges and our dependent variable of interest, job satisfaction, is
mediated by the construct developer engagement, for which we offer a definition based
on prior literature—hitherto the term engagement had been conflated with ‘participation.’
We argue that participation leads to a higher level of engagement, and that this in turn
translates into job satisfaction. Thus, we demonstrate that relationships between variables
of interest may not be straightforward, and that these require more thoughtful theorizing.
This should be a consideration for future studies of gamification in the software engi-
neering domain. Structural equation modeling as a relatively novel approach within the
SE domain is an appropriate technique to perform such analyses. Using combined data
from two data sources at an organization that had started a gamification platform, we
found that the data support our theoretical model. Based on our findings, we discussed
the potential that gamification platforms might have for other software organizations. We
hope that this study represents a starting point for more industry studies of gamification
in the software sector.
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